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Abstract

This article examines the use of ranked set sampling (RSS) with cluster randomized

designs (CRDs), for potential improvement in estimation and detection of treatment or

intervention effects. Outcome data in cluster randomized studies typically have nested

structures, where hierarchical linear models (HLMs) become a natural choice for data

analysis. However, nearly all theoretical developments in RSS to date are within the

structure of one-level models. Thus, implementation of RSS at one or more levels of an

HLM will require development of new theory and methods. Under RSS-structured CRDs

developed to incorporate RSS at different levels, a nonparametric estimator of the treat-

ment effect is proposed; and its theoretical properties are studied under a general HLM

that has almost no distributional assumptions. We formally quantify the magnitude of

the improvement from using RSS over SRS (simple random sampling), investigate the

relationship between design parameters and relative efficiency, and establish connections

with one-level RSS under completely balanced CRDs, as well as studying the impact of

clustering and imperfect ranking (under a familiar linear ranking error model). Further,

based on the proposed RSS estimator, a new test is constructed to detect treatment
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effects, which is distribution-free and easy to use. Simulation studies confirm that in

general, the proposed test is more powerful than the conventional F-test for the original

CRDs, especially for small or medium effect sizes. Two empirical studies, one using data

from educational research (i.e., the motivating application) and the other using human

dental data, show that our methods work well in real world settings and our theories

provide useful predictions at the stage of experimental design; and that substantial gains

may be obtained from the use of RSS at either level.

Keywords: asymptotic pivotal method; cost efficiency; distribution-free; hierarchical linear

models; ICC; imperfect judgement ranking; least squares estimator; nonparametric inference;

order statistics; ranking error; relative efficiency; two-stage designs.



1 Introduction

Ranked set sampling (RSS) has been known as a cost-efficient sampling method for many

years (Wolfe 2004, Chen et al. 2006). It was first introduced by McIntyre (1952) in forestry

and has been applied in fields in which precise measurement of outcomes is expensive, but

assessment of relative sizes of outcomes (ranks) of a few units at a time is feasible. The

method uses ranking, usually at the time of sampling, to provide auxiliary information to se-

lect a sample, and offers a way to achieve economy by reducing the number of measurements

required for estimation. In theory, RSS or its variants have been shown to improve inference

for many types of parameters, including mean, variance, quantiles, correlation coefficients,

and distribution functions (e.g., Takahashi and Wakimoto 1968, Stokes and Sager 1988, Bohn

and Wolfe 1992, Kvam and Samaniego 1994, Ozturk 2002, MacEachern et al. 2002, Fligner

and MacEachern 2006, Ozturk and Balakrishnan 2009, etc.). In various applications, RSS

has been found to greatly enhance the efficiency of estimation and power of statistical infer-

ence (e.g., Nussbaum and Sinha 1997, Mode et al. 1999, Murray et al. 2000, Kvam 2003).

Nowadays, RSS remains an active research area and recent work includes Frey et al. (2007),

Ghosh and Tiwari (2007), Frey (2007), Ozturk (2008), Balakrishnan and Li (2008), Chen and

Lim (2011), Frey and Ozturk (2011), Wang et al. (2012), Ozturk (2012), Frey and Feeman

(2013), Ozturk (2013), Hatefi et al. (2013). For a detailed review, see Wolfe (2012).

In this article, we examine the application of RSS in cluster randomized designs (CRDs,

Hayes and Moulton 2009). Though well established in Statistics, RSS has not yet been

applied in cluster randomized experiments, which are widely used in educational, social and

medical studies to assess treatment or intervention effects. One reason may be that data from

such experiments typically have nested structures, requiring hierarchical modeling methods

for correct analysis. The theoretical developments in RSS to date have included designs and

analyses for estimation and testing of various parameters, but all within the structure of

one-level models. Implementation of RSS at one or more levels of a hierarchical model will

require not only adaptation of the one-level analysis methods that currently exist, but also
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new theoretical and methodological developments to bridge the gap.

Our work is partially motivated by the need of improving statistical power/cost efficiency

in educational experiments, which often involve CRDs due to nested data structures (e.g.,

schools, teachers, and students). During the past decade, educational research has been gal-

vanized by new legislation such as the No Child Left Behind Act. Increasing emphasis is being

placed on accurately quantifying the success of intervention programs, where the improve-

ment can be measured by comparing the mean or change in scores of students receiving/not

receiving treatment through CRDs. There are factors that greatly favor the use of RSS in

such studies. First, implementing intervention programs in a large number of schools is often

a difficult and/or expensive task. Obtaining outcomes for students involved in an educational

experiment also may be costly, especially when assessment must be carried out individually.

Thus a data collection method that can increase statistical power without adding additional

sites or students would be useful to reduce cost. In other situations, reduction of sample size

is preferable so as to expose the minimum possible number of students to an intervention

that may be controversial, or whose benefit to risk ratio is not known precisely in advance.

The use of RSS can mitigate this ethical concern by reducing the sample size needed while

still providing acceptably precise estimates. Secondly, the educational setting is one in which

ranking of units by judgment is feasible. RSS provides a way to exploit purely judgment based

opinions about the nature of sampling units, without biasing the resulting inference. For ex-

ample, teachers having daily interactions with students may have valuable “soft” information

that would allow them to rank a small number of students at a time with respect to their

likely relative performance. There are school rankings published by various sources which

could be used for ranking schools. Ranking may also be accomplished among schools using

expert opinions or prior knowledge. Stovall (2012) investigated the use of RSS in educational

statistics, which focused on improving estimation of intervention effects by incorporating

ranking information through covariates. She showed via a simulation-based approach that

the application is promising. Unlike Stovall (2012), we focus on pure judgment ranking so
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that no covariate information is needed for data collection or analysis.

In the literature, examples of incorporating RSS into existing sampling designs are scant;

to our best knowledge, there are only four. Muttlak and McDonald (1992) proposed using

RSS with a line intercept method and Sroka (2008) proposed using RSS with stratified sam-

pling designs, both with RSS at the final stage. Sud and Mishra (2006) and Nematollahi

et al. (2008) considered two-stage RSS designs for clustered data. All four focused on es-

timation of population mean/sum and developed their methodology from the point of view

of finite population sampling theory; more specifically, they used a Horvitz-Thompson type

approach for deriving mean and variance. Each argued the advantages based on an empirical

example or simulation, without the benefit of a theoretical development showing efficiency’s

relationship to the design parameters. In addition, Sud and Mishra (2006) and Nematollahi

et al. (2008) relied on restrictive assumptions for their methodological development: they

both required N (the total number of primary units in the population) and all Mis (the total

number of secondary units within each primary unit) to be known; and Sud and Mishra

(2006) further required that Mis be equal across all primary units. By contrast, we focus

on both estimating and testing treatment effects, rather than estimating population mean.

Thus, the scope of our applications would be much wider. Our approach is model based,

which entails employing hierarchical linear models (HLMs, Bryk and Raudenbush 2002), a

standard framework for analyzing data collected from CRDs; and except for the assumed

linear structure, our approach is nonparametric, imposing the minimum level of assumptions.

Further, our work generates theoretical results that allow us to quantify the magnitude of the

gain from integrating RSS at different levels, and examine the impact of design parameters

analytically so that useful guidelines and predictions can be available at the design stage.

Proofs of all stated theorems are available in Sections S1-S5 of Supplementary Material

(SM).
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Figure 1: An illustration of a cluster randomized design with two-stage sampling. “C” stands for
“cluster” and “ids” stands for “individuals”.

2 Design, Data and Model

Consider a traditional CRD with two-stage sampling in Figure 1, where SRS is used

to select clusters and then individuals within each selected cluster (e.g., students within

classrooms, patients within hospitals). Outcomes are measured at the individual level (say Y )

and the mean scores from the treatment and control will be formally compared via statistical

analysis. Throughout this paper, we use k to index individuals, j to index clusters, and i to

index groups (i = 1 for treatment and 0 for control).

2.1 Design

We consider procedures that incorporate balanced RSS into the CRD using three ranking

schemes, in which RSS is used to select clusters only, individuals only, and both, respectively.

Cluster-level ranking (Scheme i): Here, we use RSS instead of SRS to select clusters

in the CRD. We first specify the set size Hc
i and the number of cycles mc

i for group i (the

superscript “c” means “cluster”). Note that Hc
i is typically chosen to be small, say 2 ∼ 10,

since ranking a larger number of units cheaply with reasonable accuracy is difficult. Next, in

each cycle, we repeat the following procedure for h = 1, . . . , Hc
i to select Hc

i clusters for group

i (i = 0, 1): (i) Randomly select Hc
i clusters from the population. Without yet knowing any

values of the outcome Y , rank clusters within the set based on perception of relative values

of its cluster mean. (ii) Identify the cluster with rank h and assign it to group i. Discard the

other Hc
i − 1 clusters. At the end of the repetition, Ji = mc

i ×Hc
i clusters are selected to enter
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each group i. Next, within each selected cluster j in group i, randomly select Kj(i) individuals

to receive treatment i. Note that we use “()” in subscripts to clearly indicate the nested

structure, so j(i) means the jth cluster nested in treatment i. Finally, all the individuals

receiving the treatment or control are evaluated, and outcomes recorded for each.

By incorporating auxiliary information about clusters obtainable in the form of judgement

ranks, we may increase the chance that the sampled clusters accurately represent the true

population. This results in an increase in information for a given sample size (or alternatively

a decrease in cost for the same information) that is similar in its source to that from blocking,

except that no auxiliary information about the clusters external to the sample is required.

Individual-level ranking (Scheme ii): Another way to integrate RSS into the CRD is to

rank individuals within the SRS of clusters. We can proceed as follows. First determine the

set size Hid
j(i) and number of cycles mid

j(i) for cluster j selected to enter group i (the superscript

“id” means “individual”). Again, the set sizes are chosen not to be large, to control ranking

error. Next, repeat in each cycle the following procedure for h = 1, . . . , Hid
j(i) to select Hid

j(i)

individuals for cluster j: (i) Randomly select Hid
j(i) individuals from cluster j and rank them

based on perception of relative values of Y . (ii) Identify the individual with rank h and assign

him to group i if cluster j is in group i. Discard the other Hid
j(i) − 1 individuals. At the end of

the repetition, Kj(i) = mid
j(i)×Hid

j(i) individuals are selected from cluster j to receive treatment i.

Here, it is not necessary to use the same ranker for different clusters. Finally, all individuals

receiving the treatment or control are evaluated, and outcomes recorded for each.

As with cluster-level RSS, this design provides a way to obtain a more representative

sample, but of individuals within each cluster. This is another approach to improve estimation

efficiency and statistical power to detect the treatment effect.

Both-level ranking (Scheme iii): In certain situations, both clusters and individuals

can be ranked inexpensively. This allows use of RSS at both levels for further improvement

in statistical inference. The cluster-level ranking requires information about clusters while

the individual-level ranking requires knowledge about individuals’ traits, which may be com-
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plementary. There is no need for the same rankers to be used at both levels. Note that

it is difficult to make use of multiple rankers in the original one-level design of RSS. Here,

the hierarchical data structure, combined with ranking at different levels, may allow us to

incorporate information from multiple rankers naturally.

Flexibility of RSS-structured CRDs: No matter at which level(s) RSS is implemented,

the new designs allow for varying sample sizes in different groups and within different clusters,

as shown above. This implies that RSS can be implemented in only one of the two groups,

or in some but not all selected clusters. Further, the number of individuals per cluster is not

required to be equal. This is indeed flexible in practice. As will be shown in later sections,

all the theories and methods we develop allow for the same flexibility.

2.2 Model and Data

Let Yk(ij) denote the measured outcome score of individual k in cluster j under treatment

i, for k = 1, . . .Kj(i), j = 1, . . . Ji, i = 0, 1, where Kj(i) is the number of sampled individuals in

cluster j under treatment i, and Ji is the number of clusters selected for treatment i. To

model Y under the traditional CRD in Figure 1, it is natural to adopt a HLM to reflect the

nested data structure, namely

Yk(ij) = μ+ ai + bj(i) + rk(ij), (1)

where μ is the mean score of the control group; ai is the fixed effect of treatment i, with

a0 ≡ 0; bj(i) is the random effect of cluster j; and rk(ij) is the random error, reflecting the

effect of individual k that has not been systematically accounted for by other terms in the

model. The cluster effects bj(i)’s are assumed to be identically distributed (i.i.d), following

some unknown continuous distribution with mean μb = 0 and finite variance σ2b ; the errors

rk(ij)’s are assumed to be i.i.d from some unknown continuous distribution with mean μr = 0

and finite variance σ2r . All bj(i)’s and rk(ij)’s are assumed independent. Under (1), individual

scores from the same cluster are dependent, and the intra-class correlation (ICC) is given by

σ2b /(σ
2
b + σ2r ), while scores from different clusters are independent.
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For data collected using a RSS-structured CRD, ranking information, in addition to out-

comes, becomes available for each cluster or individual measured, depending on the ranking

scheme. For scheme (i) ranking at the cluster level only, let Oc
j(i) denote the (judgement)

order of cluster j under treatment i among its own comparison set; then the data can be

expressed by Dc = {Yk(ij), Oc
j(i)} given the design parameters {Hc

i ,m
c
i ,Kj(i)} for k = 1, . . .Kj(i),

j = 1, . . . Ji (Ji = Hc
i × mc

i), i = 0, 1. For scheme (ii) ranking at the individual level only, let

Oid
k(ij) denote the (judgement) order of individual k in cluster j under treatment i among its

own comparison set; then the data can be expressed by Did = {Yk(ij), Oid
k(ij)} given the design

parameters {Ji, Hid
j(i),m

id
j(i)} for k = 1, . . .Kj(i) (Kj(i) = mid

j(i) × Hid
j(i)), j = 1, . . . Ji, i = 0, 1. For

scheme (iii) ranking at both levels, the data can be expressed by Db = {Yk(ij), Oc
j(i), O

id
k(ij)} (the

superscript “b” means “both”) given the design parameters {Hc
i ,m

c
i , H

id
j(i),m

id
j(i)} for k = 1, . . .Kj(i)

(Kj(i) = mid
j(i) ×Hid

j(i)), j = 1, . . . Ji (Ji = mc
i ×Hc

i ), i = 0, 1. Note that ranking at a single level is

a special case of ranking at both levels: Hid
j(i) = 1 and mid

j(i) = Kj(i) for ranking at the cluster

level; Hc
i = 1 and mc

i = Ji for ranking at the individual level. To avoid cumbersome notations,

the superscripts “c”, “id”, “b” are dropped when there is no ambiguity.

The HLM in (1) indicates that within the same treatment, the mean difference in Y among

clusters is reflected through the cluster effect b; and the difference among individuals from

the same cluster is reflected through the individual effect r. Thus, when ranking clusters

within a treatment, ranking by Y is equivalent to ranking by b; and when ranking individuals

within a cluster, ranking by Y is equivalent to ranking by r. That’s why we assume that

judgement ranking is done based on b or r, although their values are not directly observable.

In the case of perfect ranking, this would be equivalent to ranking clusters/individuals by b/r

or any monotone transformation of b/r. We also assume that the ranking mechanisms in the

RSS-structured CRDs are consistent (Chap. 2, pg. 12 in Chen et al. 2006).

We note that in our subsequent sections, the model (1) is used in conjunction with the

ranking information, available through the added structure of RSS, for both methodological

and theoretical developments (see technical detail in our supplemental material). For exam-

7



ple, under scheme (i), given Oc
j(i) = h, we have Yk(ij) = μ+ ai + b∗j(i) + rk(ij), where b∗j(i), defined

as bj(i)|Oc
j(i) = h, follows the distribution of the hth (judgement) order statistic of b.

3 RSS Estimator of Treatment Effect

Under the model (1), the treatment effect Δ is given by Δ = μ1 − μ0 = a1, where μi = μ+ ai

is the mean score of the treatment/control group for i = 0/1.

An advantage of the original (one-level) balanced RSS design is that the RSS estimator

of the population mean has the same simple form as the sample mean, as an average of the

quantified observations. This estimator is unbiased and distribution-free; and it is at least as

efficient as the sample mean from a SRS of the same size, even with imperfect ranking. Thus,

for RSS-structured CRDs, it is natural to consider a nonparametric estimator in the form of

Δ̂RSS = μ̂1 − μ̂0 =
1

J1

J1∑
j=1

Ȳj(1) −
1

J0

J0∑
j=1

Ȳj(0) (2)

where μ̂i denotes the RSS estimator of μi, and Ȳj(i) is the average score of individuals in cluster

j receiving treatment i. The subscript “RSS” in Δ̂RSS indicates that the estimator uses data

collected from a RSS-structured CRD. Correspondingly, we use Δ̂SRS to denote the estimator

that has the same form as (2), but uses data collected from the original CRD.

3.1 Unbiasedness, variance and efficiency

Under schemes (i) and (iii), for each rank stratum h in treatment i, we define the index

set Ji(h)={j : cluster j in treatment i has rank h}, where h = 1, . . .Hi; further, we let μb.ih ≡

E
[
bj(i) | Oj(i) = h

]
and σ2b.ih ≡ V ar

[
bj(i) | Oj(i) = h

]
, the mean and variance of the hth judgment

order statistic of the cluster effect b, respectively. Similarly, under schemes (ii) and (iii), for

each rank stratum h′ within cluster j of treatment i, we define the index set Kj(i)(h
′)={k :

individual k within cluster j of treatment i has rank h′}, where h′ = 1, . . . Hj(i); further, we let

μ
r.ijh

′ ≡ E
[
rk(ij) | Ok(ij) = h′

]
, and σ2

r.ijh
′ ≡ V ar

[
rk(ij) | Ok(ij) = h′

]
, the mean and variance of the

hth judgment order statistic of the individual effect r, respectively.

The following theorems describe some optimality and finite-sample properties of Δ̂RSS.

Theorem 1. The estimator Δ̂RSS is a least squares estimator, which, combined with μ̂ ≡ μ̂0 =
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∑J0
j=1 Ȳj(0)/J0, minimizes the sum of weighted squared distances from each observed Yk(ij) to

its conditional mean given the available ranking information, with weights {1/Kj(i)}. That is,

under the full ranking scheme (iii) (without loss of generality),

(
μ̂, Δ̂RSS

)
= argmin

μ,Δ

1∑
i=0

Hi∑
h=1

∑
j∈Ji(h)

1

Kj(i)

Hj(i)∑
h′=1

∑
k∈Kj(i)(h

′)

[
Yk(ij) − E

(
Yk(ij) | Oj(i) = h,Ok(ij) = h′

)]2
,

where E
(
Yk(ij) | Oj(i) = h,Ok(ij) = h′

)
= μ+ ai + μb.ih + μr.ijh′.

Theorem 2. The estimator Δ̂RSS is unbiased, i.e., EΔ̂RSS = Δ under all three ranking

schemes. For scheme (i) ranking at the cluster level,

V ar(Δ̂c
RSS) =

1∑
i=0

⎡
⎣ 1

JiHi

Hi∑
h=1

σ2b.ih +
1

J2
i

Ji∑
j=1

1

Kj(i)
σ2r

⎤
⎦ , (3)

where Ji = mi ×Hi; for scheme (ii) ranking at the individual level,

V ar(Δ̂id
RSS) =

1∑
i=0

⎡
⎢⎣ 1

Ji
σ2b +

1

J2
i

Ji∑
j=1

1

Kj(i)Hj(i)

Hj(i)∑
h′=1

σ2
r.ijh′

⎤
⎥⎦ , (4)

where Kj(i) = mj(i) ×Hj(i); and for scheme (iii) ranking at both levels,

V ar(Δ̂b
RSS) =

1∑
i=0

⎡
⎢⎣ 1

JiHi

Hi∑
h=1

σ2b.ih +
1

J2
i

Ji∑
j=1

1

Kj(i)Hj(i)

Hj(i)∑
h′=1

σ2
r.ijh′

⎤
⎥⎦ , (5)

where Ji = mi ×Hi and Kj(i) = mj(i) ×Hj(i).

Since Δ̂RSS and Δ̂SRS are both unbiased, Theorem 3 indicates that the relative effi-

ciency (RE) for Δ̂RSS versus Δ̂SRS , defined as the ratio of Mean Square Errors (i.e., RE ≡

MSE(Δ̂SRS)/MSE(Δ̂RSS)), is the same as the relative precision (defined as the ratio of the

variances), which is always no less than 1, regardless of ranking error.

Theorem 3. Δ̂RSS is at least as efficient as Δ̂SRS, i.e., V ar
(
Δ̂RSS

)
≤ V ar

(
Δ̂SRS

)
under all

three ranking schemes, where

V ar
(
Δ̂SRS

)
=

1∑
i=0

⎡
⎣ 1

Ji
σ2b +

1

J2
i

Ji∑
j=1

1

Kj(i)
σ2r

⎤
⎦ . (6)

3.2 Impacts of design parameters and ranking schemes

We illustrate how much gain can be achieved through the incorporation of RSS into CRDs

and how design parameters/ranking schemes affect the relative efficiency, through examining
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completely balanced designs (i.e., balance in both treatments and clusters).

For ranking at the cluster level, complete balance means that Hi ≡ Hc and mi ≡ mc so

that Ji ≡ Hc ×mc for i = 0, 1 (i.e., the same RSS design is used in both treatments), and the

number of individuals Kj(i) ≡ K is equal for all the selected clusters. Then from (3) and (6),

REc =

(
σ2b +

σ2r
K

)
/

(∑Hc

h=1 σ
2
b.h

Hc +
σ2r
K

)
, (7)

where σ2b.h is the variance of the hth judgment order statistic (relative to Hc ordered obser-

vations in total) of the cluster effect b. For ranking at the individual level, complete balance

means Ji ≡ J for i = 0, 1 (the number of clusters is equal in both treatments), and for all

selected clusters, Hj(i) ≡ Hid, and mj(i) ≡ mid so that Kj(i) ≡ K = Hid ×mid (i.e., the same RSS

design is used in the clusters). Then from (4) and (6),

REid =

(
σ2b +

σ2r
K

)
/

⎛
⎝σ2b +

∑Hid

h=1 σ
2
r.h

HidK

⎞
⎠ , (8)

where σ2r.h is the variance of the hth judgment order statistic (relative to Hid ordered obser-

vations in total) of the individual effect r.

For completely balanced designs, RE has an intuitive interpretation – it shows reduction

in the number of clusters achievable from RSS. For example, if RE=2, then SRS requires

twice as many clusters as RSS to achieve the same precision. The following propositions

investigate the impact of design parameters on RE when the distributions of b and r are both

fixed.

Proposition 1. Suppose a CRD that incorporates RSS at the cluster level is completely

balanced with design parameters (Hc,mc,K).

(i) REc does not depend on the number of cycles mc.

(ii) For perfect ranking, as Hc ↑ (increases), REc ↑ for constant K. This relationship also

holds for imperfect ranking under the assumption of the linear ranking error model in

(11), as will be described in Section 3.4.

(iii) As K ↑, REc ↑ for constant Hc.
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(iv) REc does not depend on the distribution of the individual effect r, other than through

its variance σ2r .

Proposition 2. Suppose a CRD that incorporates RSS at the individual level is completely

balanced with design parameters (J,Hid,mid).

(i) REid does not depend on the number of clusters J.

(ii) For perfect ranking, as Hid ↑, REid ↑ for constant K (so that mid ↓). This relationship

also holds for imperfect ranking under the linear ranking error model in (14), as will be

described in Section 3.4.

(iii) As K ↑ (or equivalently mid ↑), REid ↓ for constant Hid; and as K → +∞ (or equivalently

mid → +∞), REid → 1.

(iv) REid does not depend on the distribution of the cluster effect b other than through its

variance σ2b .

The top and bottom panels of Figure 2 present theoretical values of RE for (perfect)

ranking at the cluster and individual levels, respectively, for completely balanced CRDs. We

consider different values of (H,K) and four different distributions: normal, uniform, t and

lognormal (lognormal is shifted so that the mean is zero). Each subplot, which corresponds

to one of the distributions, contains five lines for H = 2, 3, 4, 6, 8; and the number connecting

each line indicates the value of H. For applications in education, ICC is typically between

0.15 and 0.25 (Hedges and Hedberg 2007), so we set σ2b = 1 and σ2r = 4 (ICC = 0.2) for all

cases. For the t distribution, we set df=3, so that it has very heavy tails. Note that in

Figure 2(a) the distributions are for the cluster effect b, since Proposition 1(iv) states that

the distribution of r is irrelevant to REc, meaning no specification on the distribution of r is

necessary. Similarly, in Figure 2(b), based on Proposition 2(iv), the distributions are for the

individual effect r and there is no specification necessary for the distribution of b.

Figure 2(a) shows results that are consistent with Proposition 1 (i.e., REc ↑ as Hc ↑ or

K ↑ while keeping the other constant) and that the improvement can be substantial, even
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Figure 2: Theoretical values of relative efficiency of Δ̂RSS versus Δ̂SRS under completely balanced
CRDs, with perfect ranking done at the cluster level and at the individual level. K represents the
number of individuals per cluster. In Panel (a), N(0, 12), U(−1.74, 1.74), t3/

√
3, and LN(0, 0.481)−1.27

were considered for the cluster effect b, all with mean zero and unit variance; in Panel (b), N(0, 22),
U(−3.47, 3.47), t3 × 2/

√
3, and LN(0, 0.941)− 1.6 were considered for the individual effect r, all with

mean zero and variance 4.

for the lognormal case. Figure 2(b) shows results that are consistent with Proposition 2

(i.e., REid ↑ as Hid ↑ for constant K, but REid ↓ as K ↑ for constant Hid) and that the

benefit from RSS disappears more quickly for small than large Hid, as the sample size per

cluster increases. In both panels, we can observe that the improvement is largest for the

uniform distribution, followed by the normal distribution; and it becomes smaller for the

t and lognormal distributions, perhaps due to the heavy tail of the t distribution and the

skewness of the lognormal distribution.

One observation from comparison of Panel (a) to (b) in Figure 2 is that RE for individual-

level ranking is generally smaller than that for cluster-level ranking. This is not surprising.

Comparing (7) and (8) side by side, we find that the role that σ2b plays in (7) is equivalent to the

role that σ2r/K plays in (8), and the gain from the use of RSS is reflected through replacing the

variance terms by the corresponding average variability of their (judgement) order statistics.

When ICC is within the interval [0.15, 0.25], as typical in educational applications, 3σ2b ≤ σ2r ≤
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6σ2b . So when K is larger than 6, the terms related to the cluster effect dominate those of the

individual effect in both (7) and (8). This leads to less significant improvement for ranking at

the individual level. Nevertheless, when K is small (e.g., ≤ 10), noticeable improvement can

be achieved, which could prove useful for educational studies where the number of potential

subjects per cluster is small (e.g., Project Maximize, Allor et al. 2010).

We proceed to examine the impact of design parameters in the case of ranking at both

levels and further compare the relative efficiency for the three different ranking schemes.

Proposition 3. Suppose a CRD that incorporates RSS at both levels is completely balanced

with design parameters (Hc,mc, Hid,mid).

(i) REb does not depend on the number of cycles mc.

(ii) For perfect ranking, as Hc ↑, REb ↑ for constant Hid and mid; and as Hid ↑, REb ↑ for

constant Hc and K (so that mid ↓). This relationship also holds for imperfect ranking

under the assumption of the linear ranking error models in (11) and (14).

(iii) Suppose Hc and Hid are both held constant. Then as K ↑ (or equivalently mid ↑), REb ↑

when RE
RSS(Hid)
r < RE

RSS(Hc)
b ; REb ↓ when RE

RSS(Hid)
r > RE

RSS(Hc)
b ; and REb remains

constant C0 if RE
RSS(Hid)
r = RE

RSS(Hc)
b ≡ C0. Further, as K → +∞ (or equivalently

mid → +∞), REb → RE
RSS(Hc)
b (see Section 3.3 for the definitions of RE

RSS(Hid)
r and

RE
RSS(Hc)
b ).

(iv) Consider three completely balanced designs with the same K but different ranking

schemes, indexed by parameters (Hc,mc
1,K), (J,Hid,mid), and (Hc,mc

2, H
id,mid), respec-

tively, where K = Hidmid. Then REb(Hc,mc
2, H

id,mid) ≥ max[REc(Hc,mc
1,K), REid(J,Hid,mid)].

3.3 Connections with one-level RSS, role of ICC, etc.

We define RE
RSS(Hc)
b to be the relative efficiency of a (one-level) balanced RSS of b’s with

set size Hc, which is given by RE
RSS(Hc)
b ≡ Hcσ2b /

∑Hc

h=1 σ
2
b.h; and RE

RSS(Hid)
r is defined in the

same manner. Under completely balanced CRDs, we establish connections with one-level

RSS, investigate the relationship between RE and ICC, and provide the maximum value of
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RE. It is also shown that RE is no larger than the one-level REs, due to the hierarchical

nature of data involved.

Proposition 4. Suppose a CRD that incorporates RSS at the cluster level is completely

balanced with design parameters (Hc,mc,K). Then REc is connected to RE
RSS(Hc)
b through the

following relationship:

REc =

(
K +

1

ICC
− 1

)
/

(
K

RE
RSS(Hc)
b

+
1

ICC
− 1

)
. (9)

REc is an increasing function of both RE
RSS(Hc)
b and ICC; and REc ≤ RE

RSS(Hc)
b . Further, for

continuous b,
REc ≤

(
K +

1

ICC
− 1

)
/

(
2K

Hc + 1
+

1

ICC
− 1

)
,

where the maximum is attainable with perfect ranking when b is uniformly distributed.

Proposition 5. Suppose a CRD that incorporates RSS at the individual level is completely

balanced with design parameters (J,Hid,mid). Then REid is connected to RE
RSS(Hid)
r through

the following relationship:

REid =

(
K +

1

ICC
− 1

)
/

[
K +

1

RE
RSS(Hid)
r

·
(

1

ICC
− 1

)]
. (10)

REid is an increasing function of RE
RSS(Hid)
r , but a decreasing function of ICC; and REid ≤

RE
RSS(Hid)
r . Further, for continuous r,

REid ≤
(
K +

1

ICC
− 1

)
/

[
K +

2

Hid + 1
·
(

1

ICC
− 1

)]
,

where the maximum is attainable with perfect ranking when r is uniformly distributed.

As indicated in Proposition 5, the clustering effect, reflected through ICC, has a negative

impact on RE when ranking is done at the individual level. This agrees with Ridout and

Cobby (1987), who showed that correlation within ranked sets reduces RE. Proposition 4,

however, indicates a positive impact of clustering on RE when ranking is done at the cluster

level, an intriguing result not yet noticed in the literature.

It is easy to extend the results to the case of ranking at both levels. For example, REb ≤

max(RE
RSS(Hc)
b , RE

RSS(Hid)
r ); and REb is an increasing function of the one-level efficiencies
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RE
RSS(Hc)
b and RE

RSS(Hid)
r . Also, given (Hc,mc, Hid,mid), we only need to know ICC from

data to obtain the upper bound of REb, given by (K + 1/ICC − 1) /{2K/(Hc+ 1) + [2/(Hid + 1)] ·

(1/ICC − 1)}. If Hc = Hid = H, the upper bound is simply (H + 1)/2, which is independent of

both K and ICC. However, REb is not a monotone function of ICC. If the change in ICC does

not affect either RE
RSS(Hc)
b or RE

RSS(Hid)
r (e.g., the distributions of b and r are from scale

families and ranking is perfect or follows (11) and (14)), then REb is an increasing function

of ICC when RE
RSS(Hid)
r < RE

RSS(Hc)
b , a decreasing function of ICC when RE

RSS(Hid)
r >

RE
RSS(Hc)
b , and constant C0 if RE

RSS(Hid)
r = RE

RSS(Hc)
b ≡ C0.

3.4 Impact of Ranking Error

We model imperfect ranking in a manner similar to that of Dell and Clutter (1972). For

ranking at the cluster level, we assume that ranking is carried out through a cluster-level

latent variable X that is an imperfect assessment of b:

b = βx (X − μx) + εx, (11)

where βx is the regression coefficient, μx is the mean of X; and εx is the error term, independent

of X, with mean 0 and variance τ2b|x that reflects the remaining variability of clusters after

taking X into account. Using Theorem 1 in Wang et al. (2006), we obtain

σ2b.ih = τ2b|x + β2xσ
2
x.(ih) (12)

where σ2x.(ih) is the variance of the hth order statistic (relative to Hi ordered observations in

total) of Xj(i). Further, based on (11), we have

σ2b.ih = σ2b

[
1− ρ2

(
1−

σ2x.(ih)

σ2x

)]
, (13)

where ρ is the correlation coefficient between b and X and σ2x is the variance of X. In the

case of perfect ranking, ρ = 1. From (13), we know that when the distribution of X and Hi

are fixed, increasing ρ would decrease σ2b.ih so that V ar(Δ̂RSS) in (3) decreases. This indicates

better ranking accuracy (measured by ρ) would lead to higher efficiency in estimation.

Similarly, we can model imperfect ranking at the individual level, by assuming the exis-
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Figure 3: Theoretical values of relative efficiency of Δ̂RSS versus ρ under completely balanced
CRDs for four different distributions of the ranking variables, including N(0, 12), U(−1.74, 1.74),
t3/

√
3, LN(0, 0.481)− 1.27.

tence of an individual-level variable Z that is an imperfect assessment of r:

r = βz (Z − μz) + εz . (14)

Let ρ be the correlation coefficient between r and Z. Then

σ2r.ijh = σ2r

[
1− ρ2

(
1−

σ2z.(ijh)

σ2z

)]
, (15)

where βz , μz , εz, τ2r|z, σ
2
z.(ijh), and σ2z are defined similarly as in (11)-(13). As with the ranking

of clusters, ρ = 1 represents the case of perfect ranking; and (15), combined with (4), indicates

that better ranking accuracy leads to higher efficiency.

To show the impact of imperfect ranking, we plot theoretical values of RE versus the

correlation coefficient ρ in Figure 3 for the four different distributions under completely bal-

anced CRDs. The left panel is for ranking at the cluster level, where we set H = 4, K = 25,

σ2b = σ2x = 1 and σ2r = 4; and the right panel is for ranking at the individual level, where we

set H = 4, m = 2, σ2b = σ2z = 1 and σ2r = 4. Note that the distributions are for the ranking

variable X or Z; the distributions of the ranking error terms ex and ez are irrelevant (other

than through their variances) to RE, as indicated in (13) and (15).

Figure 3 shows that as ρ ↑, RE ↑. For ranking at the cluster level, even when ρ decreases

to 0.6 (i.e., the ranking variable X or Z only explains 36% of the variation in b or r), the

improvement over SRS is still sizable. As for the different distributions, the improvement

follows the order that we observed in Section 3.3: Uniform>Normal >t>Lognormal, where
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the first two show quite obvious difference from the last two.

3.5 Asymptotic properties

Let J. = J0 + J1 be the total number of clusters in a RSS-structured CRD, and πi =

limJ.→+∞ Ji/J., i = 0, 1. In the next theorem, we discuss the asymptotic properties of Δ̂RSS as

J. → +∞. Here, J. goes to infinity in such a way that the πi’s exist and are bounded away

from zero, and mi’s (no. of cycles) go to infinity (so that the Ji’s go to infinity), but the set

sizes Hi’s are predetermined and finite. Note that for ranking at the individual level, Hi is

fixed at 1 so that Ji = mi goes to infinity.

Theorem 4. Assume that (i) the latent random variables b (the cluster effect) and r (the

individual effect) satisfy that for some δ > 0, E |b|2+δ < +∞ and E |r|2+δ < +∞; and (ii) πis

exist and are bounded away from zero.

1. Under scheme (i) ranking at the cluster level, as J. → +∞,

√
J.(Δ̂RSS −Δ) → N

⎛
⎝0,

1∑
i=0

1

πi

⎡
⎣ 1

Hi

Hi∑
h=1

σ2b.ih + wiσ
2
r

⎤
⎦
⎞
⎠ (16)

where wi ≡ limJi→+∞ 1
Ji

∑Ji
j=1

1
Kj(i)

that is assumed to exist.

2. Under scheme (ii) ranking at the individual level, as J. → +∞,

√
J.(Δ̂RSS −Δ) → N

(
0,

1∑
i=0

1

πi

[
σ2b + σ̃2r.i

])
(17)

where σ̃2r.i ≡ limJi→+∞ 1
Ji

∑Ji
j=1

1
H2
j(i)

mj(i)

∑Hj(i)

h′=1
σ2
r.ijh′ that is assumed to exist.

3. Under scheme (iii) ranking at both levels, as J. → +∞,

√
J.(Δ̂RSS −Δ) → N

⎛
⎝0,

1∑
i=0

1

πi

⎡
⎣ 1

Hi

Hi∑
h=1

σ2b.ih + σ̃2r.i

⎤
⎦
⎞
⎠ (18)

where σ̃2r.i, as defined above, is assumed to exist.

It follows directly from Theorem 4 that Δ̂RSS is a consistent estimator of Δ.

Finally, we illustrate the asymptotic properties in Theorem 4 using the completely bal-

anced CRDs, where all the limits exist as J. = 2J → +∞. For scheme (i), we have πi ≡ 0.5 and

wi ≡ 1/K, and (16) becomes
√
J(Δ̂RSS−Δ) → N

(
0, 2

∑Hc

h=1 σ
2
b.h/H

c + 2σ2r/K
)
. For scheme (ii), we
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have σ̃2r.i =
1

HidK

∑Hid

h=1 σ
2
r.h, and (17) becomes

√
J(Δ̂RSS −Δ) → N

(
0, 2σ2b + 2

∑Hid

h=1 σ
2
r.h/(H

idK)

)
.

Further, for scheme (iii), (18) becomes
√
J(Δ̂RSS−Δ) → N

(
0, 2

∑Hc

h=1 σ
2
b.h/H

c + 2
∑Hid

h=1 σ
2
r.h/(H

idK)

)
.

4 Hypothesis Testing

4.1 Asymptotic pivotal method

For the unbiased estimator Δ̂RSS that was developed nonparametrically, it is natural

to consider the asymptotic pivotal method for significance testing and confidence interval

construction (Chen et al. 2006). To do so, we must obtain a reasonable estimator for the

variance of Δ̂RSS.

We first note a fact that is used in our derivation of such a variance estimator. Suppose

Zl, l = 1, . . . L, are independent random variables with mean 0 and variance σ2l . Let Z̄ denotes

the average, Z̄ =
∑L

l=1 Zl/L. Then for l = 1, . . . L,
L∑
l=1

E
(
Zl − Z̄

)2
=

(
1− 1

L

) L∑
j=1

σ2j . (19)

Next, let

SSB(i, h) ≡
∑

j∈Ji(h)

(
Ȳj(i) − μ̂ih

)2
,

where μ̂ih =
∑

j∈Ji(h) Ȳj(i)/mi. Note that

Ȳj(i) = μ+ ai + bj(i) + r̄j(i),

μ̂ih = μ+ ai +
1

mi

∑
j∈Ji(h)

bj(i) +
1

mi

∑
j∈Ji(h)

r̄j(i),

where r̄j(i) =
∑Kj(i)

k=1 rk(ij)/Kj(i).

So we have

SSB(i, h) =
∑

j∈Ji(h)

⎧⎨
⎩
⎡
⎣bj(i) − 1

mi

∑
j∈Ji(h)

bj(i)

⎤
⎦+

⎡
⎣r̄j(i) − 1

mi

∑
j∈Ji(h)

r̄j(i)

⎤
⎦
⎫⎬
⎭

2

.

Since the two bracketed terms are independent, each with a mean of zero, we have

E [SSB(i, h)] =
∑

j∈Ji(h)
E

⎡
⎣bj(i) − 1

mi

∑
j∈Ji(h)

bj(i)

⎤
⎦
2

+
∑

j∈Ji(h)
E

⎡
⎣r̄j(i) − 1

mi

∑
j∈Ji(h)

r̄j(i)

⎤
⎦
2

.
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Applying the fact (19), we have

E [SSB(i, h)] = (mi − 1)σ2b.ih +

(
1− 1

mi

) ∑
j∈Ji(h)

1

H2
j(i)

Hj(i)∑
h′=1

σ2
r.ijh′
mj(i)

.

So
E

[
SSB(i, h)

(mi − 1)mi

]
=

1

mi
σ2b.ih +

1

m2
i

∑
j∈Ji(h)

1

Kj(i)Hj(i)

Hj(i)∑
h′=1

σ2
r.ijh′,

which, combined with (5), leads to the following theorem. Note that for ranking at the

individual level only, H0 = H1 = 1 so that h ≡ 1 and Ji = mi. Then SSB(i, h) ≡ SSB(i) =

∑Ji
j=1

(
Ȳj(i) − μ̂i

)2
.

Theorem 5. An unbiased estimator for V ar(Δ̂RSS) for all the three ranking schemes is given

by
V̂
(
Δ̂RSS

)
=

1∑
i=0

∑Hi
h=1 SSB(i, h)

H2
i (mi − 1)mi

. (20)

Further, for scheme (ii) ranking at the individual level only, it reduces to

V̂
(
Δ̂id

RSS

)
=

1∑
i=0

SSB(i)

(Ji − 1)Ji
. (21)

Now, based on the asymptotic normality of Δ̂RSS established in Theorem 4, we can con-

struct a pivotal test statistic, ZRSS = (Δ̂RSS − Δ)/σ̂
Δ̂RSS

, where σ̂
Δ̂RSS

=

√
V̂
(
Δ̂RSS

)
. Fur-

ther, an equally tailed 100(1 − α)% confidence interval of Δ is given by [Δ̂RSS − z1−α/2σ̂Δ̂RSS
,

Δ̂RSS − zα/2σ̂Δ̂RSS
], where zα/2 denotes the (α/2)th quantile of N(0, 1). It is straightforward to

test a hypothesis for Δ, either one-sided or two-sided, based on the pivot ZRSS.

Finally, we mention that the extremely simple forms of Δ̂RSS and its variance estimator

given in (20) or (21), which are both distribution-free, make the testing procedure easy to

implement and widely applicable. Theoretically, the testing procedure requires large Jis.

However, our simulations suggest that Ji ≥ 10 is generally acceptable.

4.2 Power comparison

To examine the size and power of the proposed test based on Δ̂RSS for testing H0 :

Δ = 0, we conducted simulation studies, where we performed the test using simulated data

with different effect sizes from completely balanced RSS-structured CRDs, and compared

the performance with the traditional F-test based on Δ̂SRS using data simulated from the

corresponding original CRDs. Under (1), the effect size can be defined by δ ≡ (μ1 − μ0)/σY =
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Δ/
√
σ2b + σ2r . We considered five different values for δ: 0, 0.15, 0.25, 0.45 and 0.8, representing

no effect (i.e. H0 holds), a very small, small, medium and large effect, respectively. The first

scenario is to examine the unbiasedness of the test size (i.e., whether the test achieves the

nominal significance level α) and the others are to assess the test power. Throughout this

paper, all tests were performed at α = 0.05. The F-test (based on SRS) uses the test statistic

MStreatment/MScluster that (asymptotically) follows an F1,2J−2 distribution under H0.

In our first study, we simulated ranking at the cluster level, with different (m,H) com-

binations (m = 4, 6, 8, 10 and H = 2, 4, 6, 8) and the number of individuals per cluster K fixed

at 25. Imperfect ranking was simulated using the linear model (11), where ρ was set to 0.7,

0.9 and 1, the ranking variable X ∼ N(0, σ2b ), βx = ρ, and the error term εx ∼ N(0, (1 − ρ2)σ2b ).

Again, we set σ2b = 1 and σ2r = 4 so that the cluster effect b ∼ N(0, 1) and the individual effect

r ∼ N(0, 4). Outcome data were generated using the HLM (1), where we chose Δ according to

the value of δ. For each setting, we generated 10,000 samples using the RSS-structured CRD,

and 10,000 samples using the original CRD. The power (or size) of each test was computed

as the proportion of times H0 was rejected among the 10,000 replicates.

From Table 1, we can see that, to detect very small or small effects, the proposed test

based on Δ̂RSS is consistently better than the traditional F-test, regardless of ranking errors.

The improvement in power increases with either H or m, but the increase with H is more

dramatic. For the medium-level effect size, the proposed test is more efficient than the F-test

for J < 30; as J increases, the improvement diminishes since both tests work well. For the

large effect size (results not reported in the table), both tests have power close to 1 except

for very small J, where the proposed test shows a sizable improvement. As to the impact

of ranking errors, the power of the proposed test increases as ρ ↑ 1, as we expect. But even

with ρ = 0.7, where X only explains 49% of the variability in b, the proposed test is always

at least as powerful as the F-test, and the improvement over the F-test is notable in most

settings. When H0 holds, we find that the size of the traditional F-test seems to be unbiased,

which maintains the nominal level 0.05 very well. The test based on Δ̂RSS rejects slightly
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more often than it should for small J, but as J increases, its test size becomes unbiased.

For a fair comparison in power, we obtained the 2.5th and 97.5th percentiles from the

empirical distribution of ZRSS using the data sets generated with δ = 0 under each (H,m, ρ)

setting, and used them instead of ±1.96 as the critical values to reject H0 : Δ = 0, to control

the size of the proposed test to be 0.05 exactly. Results are reported in Table S1 in SM.

Although the size of gain becomes smaller in general after matching the type I error rates,

all the above conclusions made from Table 1 remain valid.

δ = 0 δ = 0.15 δ = 0.25 δ = 0.45

SRS RSS SRS RSS SRS RSS SRS RSS

H m 0.7 0.9 1 0.7 0.9 1 0.7 0.9 1 0.7 0.9 1

2 4 0.04 0.07 0.07 0.07 0.09 0.13 0.13 0.14 0.16 0.23 0.25 0.26 0.42 0.54 0.57 0.60
6 0.05 0.06 0.07 0.06 0.11 0.14 0.15 0.16 0.23 0.30 0.32 0.34 0.59 0.69 0.73 0.76
8 0.05 0.06 0.06 0.06 0.14 0.17 0.18 0.19 0.29 0.36 0.40 0.42 0.73 0.81 0.85 0.87
10 0.05 0.06 0.06 0.06 0.16 0.20 0.21 0.22 0.37 0.43 0.47 0.50 0.81 0.88 0.92 0.93

4 4 0.05 0.06 0.06 0.06 0.13 0.19 0.22 0.26 0.30 0.40 0.48 0.54 0.71 0.85 0.92 0.96
6 0.05 0.05 0.06 0.06 0.19 0.25 0.30 0.34 0.42 0.54 0.65 0.72 0.89 0.96 0.99 1.00
8 0.05 0.05 0.06 0.06 0.24 0.30 0.36 0.42 0.52 0.66 0.77 0.83 0.96 0.99 1.00 1.00
10 0.05 0.05 0.05 0.06 0.28 0.37 0.45 0.50 0.64 0.77 0.85 0.91 0.98 1.00 1.00 1.00

6 4 0.05 0.06 0.06 0.06 0.18 0.25 0.33 0.41 0.42 0.57 0.71 0.80 0.89 0.97 0.99 1.00
6 0.05 0.05 0.05 0.06 0.25 0.36 0.45 0.56 0.58 0.74 0.86 0.93 0.97 1.00 1.00 1.00
8 0.05 0.05 0.05 0.05 0.33 0.44 0.56 0.67 0.71 0.85 0.94 0.98 0.99 1.00 1.00 1.00
10 0.05 0.05 0.05 0.05 0.40 0.53 0.66 0.76 0.80 0.92 0.97 0.99 1.00 1.00 1.00 1.00

8 4 0.05 0.06 0.06 0.06 0.24 0.33 0.44 0.56 0.54 0.71 0.85 0.94 0.96 0.99 1.00 1.00
6 0.05 0.05 0.05 0.05 0.32 0.46 0.60 0.73 0.72 0.87 0.95 0.99 1.00 1.00 1.00 1.00
8 0.05 0.05 0.05 0.06 0.41 0.56 0.73 0.85 0.83 0.95 0.99 1.00 1.00 1.00 1.00 1.00
10 0.05 0.05 0.05 0.05 0.49 0.66 0.81 0.91 0.91 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Ranking at the cluster level: comparison of computed size and power for the tests based
on the RSS and SRS designs under different levels of the effect size δ. For RSS, imperfect ranking
was simulated using (11), where the correlation ρ was set to 0.7, 0.9 and 1 (perfect ranking).

In our second study, we simulated (imperfect) ranking at the individual level using (14),

with the same settings for (m,H, ρ) as in the first study. The number of clusters per treatment

J was fixed at 20. All the other parameters were the same as before. Table 2 reports the

results for the comparison of the two tests. The size of the proposed test is slightly biased,

but there is improvement in power over the F-test for all the cases we examined, even for

medium or large effect sizes. Also, it is not surprising to see that the overall improvement
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δ = 0 δ = 0.15 δ = 0.25 δ = 0.45

SRS RSS SRS RSS SRS RSS SRS RSS

H m 0.7 0.9 1 0.7 0.9 1 0.7 0.9 1 0.7 0.9 1

2 4 0.06 0.06 0.06 0.06 0.14 0.15 0.16 0.17 0.29 0.32 0.34 0.35 0.72 0.76 0.77 0.78
6 0.05 0.06 0.06 0.06 0.15 0.17 0.17 0.17 0.33 0.35 0.36 0.37 0.78 0.80 0.81 0.82
8 0.05 0.06 0.06 0.06 0.15 0.17 0.17 0.18 0.33 0.37 0.37 0.38 0.80 0.82 0.83 0.84
10 0.05 0.06 0.06 0.05 0.16 0.18 0.18 0.18 0.35 0.38 0.39 0.39 0.80 0.83 0.84 0.84

4 4 0.05 0.06 0.06 0.06 0.15 0.18 0.18 0.17 0.34 0.38 0.39 0.40 0.79 0.83 0.85 0.85
6 0.05 0.06 0.06 0.05 0.16 0.19 0.18 0.18 0.36 0.39 0.40 0.39 0.82 0.85 0.86 0.87
8 0.05 0.06 0.06 0.06 0.16 0.18 0.19 0.19 0.38 0.40 0.41 0.41 0.83 0.86 0.87 0.87
10 0.05 0.06 0.06 0.05 0.17 0.18 0.19 0.19 0.37 0.41 0.41 0.42 0.85 0.87 0.87 0.86

6 4 0.05 0.06 0.06 0.06 0.16 0.18 0.19 0.19 0.35 0.40 0.40 0.42 0.82 0.85 0.86 0.86
6 0.05 0.06 0.06 0.06 0.17 0.18 0.19 0.19 0.37 0.40 0.42 0.42 0.83 0.87 0.87 0.88
8 0.05 0.06 0.06 0.06 0.17 0.19 0.19 0.19 0.38 0.42 0.42 0.42 0.84 0.87 0.88 0.88
10 0.05 0.06 0.06 0.06 0.17 0.19 0.19 0.20 0.39 0.42 0.42 0.42 0.85 0.87 0.88 0.88

8 4 0.05 0.06 0.06 0.06 0.16 0.18 0.19 0.19 0.37 0.41 0.42 0.42 0.83 0.86 0.87 0.87
6 0.05 0.06 0.06 0.06 0.17 0.19 0.19 0.19 0.39 0.41 0.42 0.43 0.85 0.87 0.88 0.88
8 0.05 0.06 0.06 0.06 0.17 0.19 0.19 0.19 0.39 0.42 0.42 0.42 0.85 0.88 0.88 0.88
10 0.05 0.06 0.06 0.06 0.17 0.19 0.19 0.19 0.39 0.42 0.42 0.42 0.86 0.88 0.88 0.89

Table 2: Ranking at the individual level: comparison of computed size and power for the tests based
on the RSS and SRS designs under different levels of the effect size δ. For RSS, imperfect ranking
was simulated using (14), where the correlation ρ was set to 0.7, 0.9 and 1 (perfect ranking).

in Table 2 is not as large as that in Table 1, since REid is generally smaller than REc, as

discussed in Section 3.2. In addition, the impact of ranking errors in test power is smaller

in general, as opposed to ranking at the cluster level. As in the first study, we obtained

empirical cutoff values for ZRSS to control the type I error rate at 0.05, and reported results

in Table S2 in SM. Still, the proposed test is at least as powerful as the F-test in all the cases,

and the power is improved generally.

Finally, we mention that in practice, the power values in Tables 1 and 2 can be used for

reference, but with the caution that the type I error is actually controlled at ∼ 0.06 for small

J. We also considered (shifted) lognormal distributions for the ranking variable X or Z in

(11) or (14) (results not reported), and conclusions are essentially unchanged.

5 Examples

We conducted two empirical studies to illustrate the proposed methods. The first fits in

the motivating setting described in the introduction, where we use data from an educational
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study HSLS09 (i.e., the High School Longitudinal Study of 2009), and examine how well our

theory can predict actual gains (and their patterns) from using RSS rather than SRS and

provide guidance in designing RSS-structured cluster randomized experiments. The second

study provides an example using human dental data, which intends to demonstrate that the

application scope of our methods is not limited to educational settings only. Further, it

provides an interesting example in which, unlike educational applications, substantial gains

can be achieved from ranking at the individual level rather than ranking at the cluster level.

In addition, we assess gains in realistic situations by simulating an error-prone ranking process

that attempts to mimic a natural one.

5.1 Educational data example

Data description and preprocessing: According to the National Center for Education

Statistics (NCES), HLSL09 was conducted to monitor a national sample as the students

progressed from the beginning of high school into post-secondary education, the workforce,

and beyond. An important feature of this study is that the data are hierarchical by na-

ture, and so the sampling design entailed selecting schools and then randomly selecting stu-

dents from within those schools. The study involves a nationally representative sample of

944 high schools. An average of 25 ninth-graders per school were selected, for a total of

∼24,000 students. These students were given a math assessment in the fall of 9th grade

(2009) and again in the spring of most students’ 11th grade year (2012), to gauge achieve-

ment gains in mathematics. For comprehensive information about this study, see the URL

http://nces.ed.gov/surveys/hsls09/.

We downloaded the public-use student-level data of HSLS09 for the base year (2009) and

the first follow-up year (2012) from the NCES website, in which all the school IDs are sup-

pressed for confidentiality. To be able to group students by schools, we preprocessed the data

and recovered student-school membership information for 763 schools and 16,975 students.

This recovery was done based on two continuous variables (X2SchoolCli and C2CaseLoad)

whose values, if not missing, are supposed to be the same for all students from the same
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school. For illustrative purposes, we removed schools with number of students < 20 and

treated the remaining 472 schools and 12,533 students as the population(s) from which sam-

ples were drawn using either SRS or RSS. The students’ 2012 math theta scores (X2TXMTH)

were thought of as the response. Though our methodological development focuses on pure

judgment ranking without using any covariate information, we generated rankings using the

base-year number correct scores of 72 math items (X1TXMSCR), in order to simulate a large

number of samples from the proposed designs easily. For cluster-level ranking, the school

mean scores were used. The correlation between X2TXMTH and X1TXMSCR is 0.78 at

the student level, and 0.89 at the school level. Further, treatment and control labels were

randomly assigned to sampled schools. Since none of the students really received treatment,

the means of the two groups should be the same; therefore, the parameter of interest, the

treatment effect, was initially set to zero. We also imputed missing values of both variables

based on a simple regression model between the two variables. ICC is about 0.25 for the

preprocessed data.

Performance assessment: Suppose we are interested in estimating and testing the effect

of an educational intervention program that is to enhance high school students’ math abil-

ity. Before implementing the program, we want to investigate the performance of different

(completely balanced) designs using the HSLS09 data. We fix J (the number of schools per

group) at 15 and K (the number of students per school) at 6. Table 3 lists all possible RSS

designs for the set size H ∈ {2, . . .10}, including two for scheme (i) ranking at the cluster level,

three for scheme (ii) ranking at the individual level, and six for scheme (iii) ranking at both

levels.

For each design, we generated 100,000 samples from the “population” (i.e., the entire

dataset). We also generated 100,000 samples using the original CRD. Schools and students

were drawn both with replacement in each simulated sample. Then we computed the approx-

imate MSE for Δ̂RSS and Δ̂SRS based on these RSS and SRS samples, respectively, and their

ratio was recorded as the empirical RE in Table 3. Further, to evaluate the performance in
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testing, we added Δ = δ ·
√
σ2b + σ2r to the treatment group, where δ was set to 0.15, 0.25, 0.45

and 0.8 as in Section 4.2, and σ2b and σ2r were estimated from the entire data set. The power

(or size) values of the proposed test and F-test are reported in Table 3.

Size/Power Comparison(α = 0.05)
Estimation δ=0 δ=0.15 δ=0.25 δ=0.45 δ=0.8

DesignID Hc mc Hid mid RE TRE SRS RSS SRS RSS SRS RSS SRS RSS SRS RSS

i-1 3 5 1 6 1.35 1.35 0.05 0.06 0.10 0.14 0.19 0.27 0.49 0.65 0.93 0.98
i-2 5 3 1 6 1.50 1.54 0.05 0.06 0.10 0.15 0.19 0.30 0.50 0.70 0.93 0.99

ii-1 1 15 2 3 1.05 1.07 0.05 0.06 0.10 0.12 0.19 0.22 0.49 0.55 0.94 0.96
ii-2 1 15 3 2 1.12 1.11 0.05 0.06 0.10 0.12 0.19 0.23 0.49 0.57 0.93 0.96
ii-3 1 15 6 1 1.18 1.16 0.05 0.06 0.10 0.12 0.19 0.24 0.50 0.59 0.93 0.97

iii-1-1 3 5 2 3 1.48 1.48 0.05 0.06 0.10 0.14 0.19 0.29 0.50 0.69 0.93 0.99
iii-1-2 3 5 3 2 1.54 1.55 0.05 0.06 0.10 0.15 0.19 0.30 0.50 0.70 0.93 0.99
iii-1-3 3 5 6 1 1.66 1.66 0.05 0.06 0.10 0.15 0.19 0.31 0.49 0.74 0.93 0.99
iii-2-1 5 3 2 3 1.69 1.70 0.05 0.06 0.10 0.16 0.19 0.32 0.49 0.74 0.93 1.00
iii-2-2 5 3 3 2 1.77 1.80 0.05 0.06 0.10 0.17 0.19 0.34 0.50 0.76 0.93 1.00
iii-2-3 5 3 6 1 1.92 1.95 0.05 0.06 0.10 0.17 0.19 0.36 0.49 0.79 0.93 1.00

Table 3: HSLS09 example: comparing performance of different (completely balanced) designs in
estimation and testing. The 1st part of DesignID indicates the ranking scheme used; the 2nd part
indicates which setting is used for the school level, where 1 stands for (3, 5) and 2 for (5,3); and the
3rd part indicates which setting is used for the student level, where 1 stands for (2,3), 2 for (3,2) and
3 for (6,1). The power of the F-test based on SRS in each column should be constant, but subject
to Monte Carlo errors.

In fact, our analytical results in Section 3.3 enable us to analyze the completely balanced

designs without using actual data. For the two designs with ranking scheme (i), we predict

that Design i-2 is better than Design i-1, since Proposition 1 indicates that larger Hc leads to

higher efficiency while mc is irrelevant. Among the three designs with scheme (ii), we predict

that Design ii-3 is the best, followed by ii-2, and last ii-1, since Proposition 2 indicates that

when K is fixed, increasing Hc increases efficiency. Similarly, according to Proposition 3,

Design iii-s-3 should be the best among Designs iii-s-1, iii-s-2 and iii-s-3 that are all better

than Design i-s, for s = 1, 2; and Design iii-s-t is better than both i-s and ii-t for all s, t.

Finally, Design iii-2-3 should be the best among all the 11 designs, since iii-2-3 is better than

iii-1-3, due to larger Hc. The RE and power values in Table 3 confirmed all the predictions

based on our theories.
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We computed theoretical RE values (TRE in Table 3) based on the linear ranking error

models and normal distributions, using estimated ICC and correlation coefficients (for mea-

suring the ranking quality) as reported before. TRE predicts the empirical RE surprisingly

well. On one hand, the normality assumption roughly holds for the data. On the other

hand, our formulas were all developed based on the HLM. The data in this example show

obvious deviation from the model assumptions. For example, the variances of math scores

from different schools range from 0.16 to 2.8 with mean 0.95, while the HLM requires a con-

stant variance across schools. The close match between theoretical and empirical values is

consistent with the finding that HLMs are robust for modeling nested data in the literature

(e.g., Bryk and Raudenbush 2002); and it further suggests that our theories based on the

HLM are resistant to violations of model assumptions, too.

As to testing, we again observe that the size of the proposed test is slightly biased while

the size of the F-test is unbiased. But the power of the proposed test is consistently higher,

for all the settings we examined. This remains true when empirical critical values were used

to match the type I error rates (see Table S3 in SM). As δ gets larger, the improvement over

the F-test first increases and then decreases for all the designs. The gain is quite large for

small or moderate effect sizes, especially for the winning design iii-2-3.

In summary, this example has provided a successful proof of concept for the proposed

methods using educational data. It also shows that our theories can be very helpful in

guiding experiment design and predicting gains without using actual data. In fact, users only

need design parameters, ICC and correlation values to get a reasonable estimate of RE based

on normal distributions; to get an upper bound for RE, they only need design parameters

and ICC. Besides the simplicity offered, this theoretical approach is useful when researchers

only have a restricted access to complete data, as is typical in educational research.

5.2 Dental data example

Data description: Human tooth-size analysis plays an important role in orthodontics

and forensic identification (Mitsea et al. 2014, Othman and Harradine 2007). Past studies
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have presented normative data with sex differences, and shown variations in tooth sizes

among racial groups (e.g., Garn et al. 1967, Buschang et al. 1988, Lee et al. 2006). We

consider a data set containing measurements on tooth widths for 296 subjects with normal

occlusion, including 179 men and 117 women, who were selected from over 15,000 young

Korean adults through a community dental health survey conducted in 1997-2005 (Lee et al.

2006). Typically, human adults have 32 teeth, among which there are 8 incisors, 4 canines, 8

premolars, and 12 molars (including 4 wisdom teeth). For each of the subjects, the widths of

all the non-wisdom teeth were measured by digital Vernier calipers, a process that requires a

3-week training period to master; and these measurements are available in the data set. In

the numerical study, we treated the 296 subjects as the population of interest, from which

we simulated samples using both RSS-structured and original CRDs. Here, each person can

be treated as a cluster, and each of his/her teeth as an individual within the cluster. So a

(completely balanced) CRD entails selecting J persons in group i, and then selecting K teeth

from the set of the 28 non-wisdom teeth for each selected person j (using either RSS or SRS).

For each generated sample, the analysis goal was set to investigate whether there exists any

gender difference in tooth sizes given the specific ethnicity (i.e., a Korean population); and so

the comparison based on the HLM (1) was made between male and female groups. The width

difference between Korean men and women estimated from the entire data set, Δ̂ ≈ 0.28mm

(with p-value < 10−11), was thought of as the true value of Δ; and ICC is about 0.04, indicating

σ2r � σ2b (i.e., the within-cluster variability is much larger than the between-cluster variability).

Performance assessment: For RSS-structured CRDs, we considered all the three ranking

schemes with K fixed at 4: (i) ranking at the cluster level only with Hc ≡ 2, mc = 5 or 10 (so

that J = 10 or 20 correspondingly); (ii) ranking at the individual level with Hid = 2 or 4 (so

that mid = 2 or 1, correspondingly), and J = 10 or 20; and (iii) ranking at both levels with all

the four combinations in the first two schemes. In the real application, perfect ranking at the

cluster level is not easy to obtain inexpensively, which requires ranking different persons based

on the total width of all the 28 non-wisdom teeth. However, ranking with a decent quality
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can be easily done based on the width of one of the front teeth via visual inspection or other

cheap methods without using digital calipers. For example, one can use a simple tool, similar

to a compass with two sharp pointers, whose distance can be adjusted, to copy the width of

a front tooth and then mark the width on a straight line for subsequent comparison. In this

study, ranking at the cluster level was simulated using N3L, the width of the left mandibular

cuspid (the third tooth from the center, one of the canines). The estimated correlation

between N3L and the total width of the 28 teeth is 0.78. Ranking at the individual level

requires comparing different teeth of the same person. At either level that employs RSS, we

simulated imperfect ranking in the following way: for any pairwise comparison during the

ranking process, if the width difference between two teeth is larger than γ millimeters, we

then use the actual rankings of the two teeth; otherwise, we randomly assign the ranks. This

is to resemble a realistic situation when the difference is indistinguishable (without accurate

measurement), but a ranker is forced to assign exact ranks. Obviously, doing so would induce

nonlinear ranking errors that do not follow the model discussed in Section 3.4. We let γ vary

from 0 to 2, with step size 1
3 that is about 0.2σr (σr was estimated from the entire data set).

We generated 50,000 samples from the “population” for each setting considered. Again,

samples were drawn with replacement at both stages. We computed the empirical RE and

power from these samples as before. The top panels of Figure 4 compare the performance

of different designs in estimating Δ. The RE values in all the settings are no less than 1,

meaning that the RSS designs achieve better or comparable efficiency than the corresponding

SRS designs, regardless of ranking errors. Among the three schemes, ranking at both levels,

as expected, achieves higher efficiency than ranking at either level. However, we find that

the gain is mostly from ranking at the individual level while ranking at the cluster level is

only slightly better than SRS (and as γ increases, the gain diminishes). This seems to be

interesting – as we observe the opposite from Figure 2, simulation results in Section 4.2 and

the educational example in Section 5.1, where ranking at the cluster level is more effective.

It is simply because that in this example, ICC is close to zero, much smaller than the typical
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ICC values in educational studies (i.e, 0.15–0.25). As ICC → 0, we have REc → 1 from

(9) in Proposition 4; and REid → RE
RSS(Hid)
r , the maximum value it can attain, from (10) in

Proposition 5. As to the impact of the nonlinear ranking errors, RE ↓ as γ ↑ under each design.

The RE curves for Hid = 4 are steeper than those for Hid = 2. As γ becomes sufficiently large,

ranking is close to random so that all the RE curves approach 1. Note that even for γ = 1

(1mm is a quite distinguishable difference even when a cheap method is used for ranking),

there are considerable gains in efficiency when ranking at the individual level or both levels.

Besides the observations made above, the RE patterns agree very well with our analytical

results in Section 3.2. For example, our theory suggests that when Hc is fixed, RE does not

depend on J, regardless of ranking schemes. This has been confirmed by the observation

that in each upper panel, the black lines (for J = 10) overlap almost completely with the

corresponding red lines (for J = 20) for designs with the same Hc and Hid. Also, the middle

and right upper panels of Figure 4 show that for designs with the same Hc and K, larger

Hid yields larger RE. This is, again, consistent with our theory. In addition, we compared

the relative efficiency attained to what theory would have predicted under the designs with

perfect ranking at both levels. Table 4 shows that they matched well.

The bottom panels of Figure 4 compare the performance of different designs in testing

H0 : Δ = 0, where the black/red dotted straight line shows the power of the test based on the

original CRDs (using SRS) for J = 10/20. For the same J, the power curves are always above

the dotted lines, meaning that the RSS designs are more powerful than the corresponding

SRS design in testing, and the gains from the designs with Hid = 4 are sizable. The patterns

of the power are quite similar to those observed for RE, except for the following: (i) larger J

leads to larger power so that we have two separate power curves for designs with the same

Hc and Hid; and (ii) generally, the power curves decrease slower than the corresponding RE

curves as γ increases.

To assess the size of the proposed test in this example, we deliberately simulated all the

samples from the 179 men and randomly assigned the gender labels so that H0 : Δ = 0 holds
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Figure 4: Dental example: empirical relative efficiency of Δ̂RSS versus Δ̂SRS (the top panels) and
power of the tests based on the RSS and SRS designs (the bottom panels) as γ, a measure of the size
of judgment error, increases. The left, middle and right panels are for ranking at the cluster level,
individual level and both levels, respectively. The dotted straight lines in the bottom panels show
the power of the test based on the original CRDs (using SRS). The lines in black are for J = 10 and
lines in red are for J = 20.

RE TRE
Scheme Hc Hid mid J = 10 J = 20

i 2 1 4 1.03 1.03 1.04
ii 1 2 2 1.38 1.38 1.38

1 4 1 1.99 1.97 1.99
iii 2 2 2 1.48 1.45 1.47

2 4 1 2.11 2.20 2.17

Table 4: Dental example: comparing empirical relative efficiency (RE) with theoretical relative
efficiency (TRE) under perfect ranking. The TRE values were calculated based on normal distri-
butions.

for all the designs considered in Figure 4. We find that the F-test holds the size at 0.05 very

well; and the size of the proposed test for the RSS designs is slightly biased (i.e., 0.05 or

0.06). This is exactly the same as what we observed before.

The results reported in Figure 4 were based on samples selected with replacement. We also
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simulated samples without replacement from the “population”. The RE and power values are

larger than those for samples with replacement, due to the finite-population effect. However,

all the findings from Figure 4 remain valid.

6 Discussion

We first mention that among the research that proposed using RSS with existing sampling

designs, the contribution of our work is significantly different from that of the four papers

mentioned in the introduction (i.e., Muttlak and McDonald 1992, Sud and Mishra 2006, Sroka

2008, and Nematollahi et al. 2008). In each case, the authors showed that an improvement

would occur (although always with RSS at the final stage of sampling), and then produced

an example or simulation to show how much. However, none of them produced theory that

allowed them to quantify the improvement. In fact, the comment in Nematollahi et al. (2008)

was typical: “Comparing relative precisions shows that increasing the number of cycles does

not increase the relative precision in most cases. Although the effect of increasing n (#

of primary sampling units) and m′ (number ranked) on the relative precision (RP) is not

clear, the results show that the maximum RP is obtained when n and m′ are large.” In other

words, these papers used empirical results to speculate on the effect of changes to the various

ranked set sampling design parameters. Our work provides definite answers to this question,

as well as other important questions like how the inferential procedures about testing the

treatment effect should be constructed, what assumptions about the two-level model are

required, what are the connections with the one-level RSS, and what are the role of ICC and

the impact of imperfect ranking, for all possible combinations of RSS integration, leaving no

doubt to practitioners. No previous work has addressed these questions systematically and

comprehensively, especially under a model-based framework that imposes the minimum level

of (distributional) assumptions.

We next point out two potential contributions of our work in other research settings. One

is related to Ridout and Cobby (1987), where the authors investigated how much ranking

errors and what they call non-random selection, which is really the effect of clustering within

31



ranked sets, hurts RSS. The problem can be viewed as a special case of ranking at the indi-

vidual level, and so our work provides a different angle on their work. In fact, our expressions

(8), (14), (15) could be used to investigate this analytically, and explain observations they

made from an example. The other is about the tradeoffs between stratification at different

levels in a multistage design. In the sampling literature, there is not a well-known answer to

address this. Since RSS can be viewed as a stratified sample (Stokes and Sager 1988), our

work, which considers all possible combinations within two stages, may provide analytical

insights on the tradeoffs.

Since this is the first study to investigate the use of RSS with CRDs to assess treatment

effects under the HLM, our development focuses on the designs involving two-level data.

This helps us avoid unnecessarily complex notations and technical details, and allows us to

concentrate on developing basic approaches that can be adapted for higher-level data. In

fact, no matter how many levels are in a sequential design, the essential idea for the RSS-

integrated designs remains the same: use RSS in some stage(s) when feasible. Practical

implementation of RSS requires that approximate ranking of outcomes be possible before

measurement by some inexpensive means. As long as this requirement is met, RSS can

potentially be used for selecting sampling units of any level. It would therefore be of interest

to consider the extension to multi-site cluster randomized designs (MSCRDs), which have

become very common in recent years (Spybrook 2008).

The proposed test relies on the asymptotic normality of Δ̂RSS, which requires J → +∞.

However, as long as J is not too small (e.g., J ≥ 10), the gain in power is significantly larger

than the small bias in test size when H0 holds (test size 0.05−0.06 at the nominal level of

0.05), as suggested by our simulation. On the other hand, for very small J, the size of the

proposed test tends to be above the nominal level. Thus, one interesting topic for future

research is to develop an improved test for small J. Other potential topics include estimating

variance components (σ2b , σ2r), testing the existence of the cluster effect (i.e., σ2b = 0), and

allowing the use of unbalanced RSS in CRDs.
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.�� ��	�
� ����� ���  ���� �	 	�
�
�� �� ���� ��� ���� �� 8�� �	����� !� ��  ���� ������ �� ����- ��		

REb ��

REb =

(
K +

1

ICC
− 1

)
/

[
K

RE
RSS(Hc)
b

+
1

RE
RSS(Hid)
r

·
(

1

ICC
− 1

)]
,

����� RE
RSS(Hid)
r ��� RE

RSS(Hc)
b ��� ��"��� �� #������ $�$� ��� 
��9	 ����� K �	 � ���������	

������
� 	� ����

d

dK
REb =

(
1

RE
RSS(Hid)
r

− 1

RE
RSS(Hc)
b

)(
1

ICC
− 1

)
/

[
K

RE
RSS(Hc)
b

+
1

RE
RSS(Hid)
r

·
(

1

ICC
− 1

)]
.

)
���
�� ���� RE
RSS(Hid)
r < RE

RSS(Hc)
b � dREb/dK > 0 	� ���� REb �	 �� ������	��� �������� ��

K: ���� RE
RSS(Hid)
r > RE

RSS(Hc)
b � dREb/dK < 0 	� ���� REb �	 � ������	��� �������� �� K:

��� ���� RE
RSS(Hid)
r = RE

RSS(Hc)
b ≡ C0� ���� REb ≡ C0� ��� ����� ��	�
�	 ��
� �� 
�����

������� K �	 ���������	 �� ��	������

.���

�� ��	�
� ���� 	�
 
� ��

��	 ���
 ��� ���� ���� RE
RSS(Hid)
r ≥ 1 ��� RE

RSS(Hc)
b ≥ 1�

����������� �

�� �	���
�	� �3� �� 8�� �	����� 0� �� 	�
 
� ���� ���� �� �4�� RE
RSS(Hc)
b = Hcσ2

b/
∑Hc

h=1 σ
2
b.h

��� σ2
r/σ

2
b = (1− ICC)/ICC� &� �	 ������
 �� 	��� REc �	 �� ������	��� �������� �� RE

RSS(Hc)
b

�	��� �3�� (������������ �3� ����

REc = 1 +K

(
1− 1

RE
RSS(Hc)
b

)
/

(
K

RE
RSS(Hc)
b

+
1

ICC
− 1

)

�����
	 ���� REc �	 �� ������	��� �������� �� ICC 	���� RE
RSS(Hc)
b ≥ 1� ��� 
�-�
�
 �� REc

��

��	 ���
 ��� ���� ���� RE
RSS(Hc)
b ≤ (H + 1)/2 �������	�� ��� ����
���� !315��
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���  ���� �	 	�
�
�� �� ���� �� 8�� �	����� 0� ��� 	� �
����� ��� ��������

�� ����� �� ��	��	
 


�� "�	� ��������� � 
�

� �� ����� ��� �	�
 ����� ������
 �	 ���
��


���� �� ��� X1, . . . , XH �� ����� �	
��
�	�� 
�
�	� ��
������ ���� ���
 0 �
� E |X1|2+δ <

∞ �	
 �	�� δ > 0� ���
� �	
 ���
� h = 1, . . . , H� E|X[h]|2+δ ≤ H · E |X1|2+δ < ∞.

�
		�� ,�� f(x) ������ ���  �� �� X � ���� ��� 	�  ��� X � .�� h ∈ {1, . . . , H}� 
�� f[h] (x)

�� ���  �� �� ��� h�� '���
��� ����� 	����	��� ���
����� �� H ��	��������	� �� X � 6���� ���

�		�
 ���� �� � ���	�	���� ������� 
������	
 �)�� � +�  �� !+ �� )��� �� �
� +;;1�� �� ����

f(x) =
f[1](x) + · · ·+ f[H](x)

H
.

���	� ��� ��� h ∈ {1, . . . , H}� f[h](x) ≤ H · f(x)� ����� �� ����

E
∣∣X[h]

∣∣2+δ
=

∫
X
|x|2+δ f[h](x)dx

≤ H ·
∫
X
|x|2+δ f (x) dx

= H · E |X1|2+δ < ∞.

��  ��	��� ���  ����	 �� ������
 0 ��� ��� "�	� ��� ������� 	���
�	� ���  ���� ��� ���

����� �	 ��	���

� � ��
�������� �� ��� "�	� ��� ��� 
��� ����
��� �� ��������	 ��� �����

�
����� ��� ��������
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������� �� ��� ������� �����

,�� Wj(i) = Ȳj(i)−μih ��� Uj(i) =
1√
mi
Wj(i) ��� j ∈ Ji(h) ��� i = 0, 1� ����� μih = μ+ai+μb.ih�

���� E
(
Wj(i)

)
= 0 ��� V ar

(
Wj(i)

)
= σ2

b.ih+
σ2
r

Kj(i)
� �� ��

 �  
� ��� ,��������.�

�� ������
 ��

	��� ��� �	�
 ����� ���
�
��� ��
∑

j∈Ji(h)
Uj(i)� �� �� 	�� �� ���� �� ����� ��� ��� ���������	

�� ��� ������
�

.��	�� ���� ���� ��� j ∈ Ji(h) ��� i = 0, 1� E
(
Uj(i)

)
= 0 ��� �	 mi → +∞�

∑
j∈Ji(h)

E
(
U2
j(i)

)
= σ2

b.ih +
1

mi

∑
j∈Ji(h)

σ2
r

Kj(i)

→σ2
b.ih + wihσ

2
r > 0

����� wih ≡ limmi→+∞ 1
mi

∑
j∈Ji(h)

1
Kj(i)

� ���� ���� ���� wih �-�	�	 	���� wih > 0� wi =

1
Hi

∑Hi

h=1wih ��� wi �	 �		�
�� �� �-�	�� #������ ��� �

 ε > 0�

∑
j∈Ji(h)

E
(
U2
j(i);
∣∣Uj(i)

∣∣ > ε
)
=
∑

j∈Ji(h)

E

(
1

mi
W 2

j(i);
∣∣Wj(i)

∣∣ > √
miε

)

≤ 1

εδm
1+δ/2
i

∑
j∈Ji(h)

E
(∣∣Wj(i)

∣∣2+δ
)

��� ��	�� �� <��	��9	 ������
��� ��� ,�

� !�

E
(∣∣Wj(i)

∣∣2+δ
)
= E

(∣∣Ȳj(i) − μih

∣∣2+δ
)

= E

⎛
⎜⎝
∣∣∣∣∣∣

1

Kj(i)

Kj(i)∑
k=1

(
Yk(ij) − μih

)∣∣∣∣∣∣
2+δ
⎞
⎟⎠ ≤ 1

K2+δ
j(i)

Kj(i)∑
k=1

E
(∣∣Yk(ij) − μih

∣∣2+δ
)

≤ 1

K2+δ
j(i)

Kj(i)∑
k=1

{
E
(∣∣bj(i) − μb.ih

∣∣2+δ
)
+ E

(∣∣rk(ij)∣∣2+δ
)}

< +∞.

���	� 
��� ��
∑

j∈Ji(h)
E
(
U2
j(i);
∣∣Uj(i)

∣∣ > ε
)
→ 0� �	 �	 mi → +∞�

��� ��	�� �� ,��������.�

�� �,�.� ������
 �	�� ������
 $�0�/�  �� !+3� *������ +;!;��

�� ���� ∑
j∈Ji(h)

Uj(i) → N
(
0, σ2

b.ih + wihσ
2
r

)
�	 mi → +∞.
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.������ ������ ����
√
mi(μ̂ih − μih) =

∑
j∈Ji(h)

Uj(i) ��� limmi→+∞ Ji/J. = πi� �� ����

√
J.

Ji
Hi ·

∑Hi

h=1

√
mi (μ̂ih − μih)

Hi
→ N

(
0,

1

πiHi

Hi∑
h=1

(
σ2
b.ih + wihσ

2
r

))
,

������ ��
����� ����

√
J.
(
Δ̂RSS −Δ

)
=

√
J.

[∑H1

h=1 (μ̂1h − μ1h)

H1
−
∑H0

h=1 (μ̂0h − μ0h)

H0

]
,


���	 �� ��� "��
 ��	�
� �� �$��

������� �� ��� ���������� �����

,�� Qj(i) = Ȳj(i) − μi ��� Tj(i) =
1√
Ji
Qj(i) ��� j = 1, . . . Ji ��� i = 0, 1� ���� E

(
Qj(i)

)
= 0 ���

V ar
(
Qj(i)

)
= V ar

(
Ȳj(i)

)
= σ2

b +
1

H2
j(i)

mj(i)

∑Hj(i)

h′=1
σ2
r.ijh′ � �� ��

 �  
� ��� ,�. ������
 �� 	���

��� �	�
 ����� ���
�
��� ��
∑Ji

j=1 Tj(i)� �� �� 	�� �� ���� �� ����� ��� ��� ���������	 �� ���

������
�

.��	�� ���� ���� ��� j = 1, . . . Ji ��� i = 0, 1� E
(
Tj(i)

)
= 0� ���

Ji∑
j=1

E
(
T 2
j(i)

)
= σ2

b +
1

Ji

Hi∑
h=1

1

H2
j(i)mj(i)

Hj(i)∑
h′=1

σ2
r.ijh′

→ σ2
b + σ̃2

r.i > 0 �	 Ji → +∞.

#������ ��� �

 ε > 0�

Ji∑
j=1

E
(
T 2
j(i);
∣∣Tj(i)

∣∣ > ε
)
=

Ji∑
j=1

E

(
1

Ji

Q2
j(i);
∣∣Qj(i)

∣∣ >√Jiε

)
≤ 1

εδJ
1+δ/2
i

Ji∑
j=1

E
(∣∣Qj(i)

∣∣2+δ
)
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��� ��	�� �� <��	��9	 ������
��� ��� ,�

� !�

E
(∣∣Qj(i)

∣∣2+δ
)
= E

⎛
⎜⎝
∣∣∣∣∣∣

1

Hj(i)

Hj(i)∑
h
′
=1

(
bj(i) + r̄ijh′ − μr.ijh′

)∣∣∣∣∣∣
2+δ
⎞
⎟⎠ ≤ 1

H2+δ
j(i)

Hj(i)∑
h
′
=1

E
∣∣bj(i) + r̄ijh′ − μr.ijh′

∣∣2+δ

≤ 1

H2+δ
j(i)

Hj(i)∑
h′=1

(
E
(∣∣bj(i)∣∣2+δ

)
+ E

(∣∣r̄ijh′ − μr.ijh′
∣∣2+δ
))

≤ 1

H2+δ
j(i)

Hj(i)∑
h′=1

⎛
⎝E

(∣∣bj(i)∣∣2+δ
)
+

∑
k∈Kj(i)(h′)

E
(∣∣rk(ij) − μr.ijh′

∣∣2+δ
)⎞⎠ < ∞,

����� r̄ijh′ = 1
mj(i)

∑
k∈Kj(i)(h′) rk(ij)� ���	� 
��� ��

∑Ji
j=1E

(
T 2
j(i);
∣∣Tj(i)

∣∣ > ε
)

→ 0 �	 Ji →
+∞� ��� ��	�� �� ��� ,�. ������
� �� ����

∑Ji
j=1 Tj(i) → N (0, σ2

b + σ̃2
r.i)� �	 Ji → +∞�

.������ ���� ����
√
Ji(μ̂i − μi) =

∑Ji
j=1 Tj(i)� limmi→+∞ Ji/J. = πi� ������ ��
����� ����

√
J.
(
Δ̂RSS −Δ

)
=

√
J. [(μ̂1 − μ1)− (μ̂0 − μ0)]� 
���	 �� ��� "��
 ��	�
� �� �0��

�� ���������� ��
������� �	����� ��� ���	� ��
�������

&� #������ 0�+� ��  ��	��� ��� ���
�	 �� ��
 ��� ��� ��	�	 ��	�� �� ��� (## ��� #(# ��	���	�

����� ��� �������
 �������
 ��
��	 ���� �	��� =���� ���
�	 #! ��� #+  ��	��� ��	�
�	 ���  ����

��
 ���	��� ����� �
 �����
 �������
 ��
��	 ���� �������� ��� ZRSS �� ������
 ��� �� � & �����

���� �� ;�;/�

#!;



δ = 0.15 δ = 0.25 δ = 0.45

H m ��� ��� ��� ��� ��� ���

ρ ��� ��� � ��� ��� � ��� ��� �
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 ���� ���
 ���
 ���	 ���� ���� ���� ���� ���� ����

�� ��	� ��
� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���
� #!> ������� �� ��	 
��
�	� �	�	�� ���	� 
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�� ���	� ���
���� ��	 ���	 � 	���� ���	
 ���

��	 �	
�
 ��
	� �� ��	 ��� ��� ��� �	
���
 ���	� ���	�	�� �	�	�
 �� ��	 	�	
� 
��	 δ� �	�	� ��	 �	
�


��	
 ��
	� �� ��� �	�	 
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δ = 0.15 δ = 0.25 δ = 0.45

H m ��� ��� ��� ��� ��� ���

ρ ��� ��� � ��� ��� � ��� ��� �
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���� ��	 ���	 � 	���� ���	
 ���
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�
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� 
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�
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	� �� ��� �	�	 
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�
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