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Abstract

Estimation of high-dimensional covariance matrices is known to be a difficult problem,

has many applications, and is of current interest to the larger statistics community. We

consider the problem of regularizing the sample estimate of the covariance matrix of a

multivariate Gaussian distribution in the “large p small n” setting. Several approaches

to regularize high-dimensional covariance matrix estimates have been proposed in the

literature. In many applications, the estimate of the covariance matrix is required to be

not only invertible, but also well-conditioned. Although many regularization schemes

attempt to do this, none of them address this problem directly. In this paper, we

propose a maximum likelihood approach with an explicit constraint on the condition

number with the direct goal of obtaining a well-conditioned estimator. No sparsity

assumption on either the covariance matrix or its inverse are are imposed, thus making

our procedure more widely applicable. We demonstrate that the proposed regulariza-

tion scheme is computationally efficient, yields a type of Steinian shrinkage estimator,

and has a natural Bayesian interpretation. We investigate the theoretical properties of

the regularized covariance matrix comprehensively and proceed to develop an approach

that adaptively determines the level of regularization that is required. Finally, we in-

vestigate the performance of the regularized matrix in two-sample testing and financial

portfolio optimization problems, and demonstrate that it has desirable properties, and

can serve as a competitive procedure, especially when the sample size is small and

when a well-conditioned estimator is required.

Keywords: covariance estimation, regularization, convex optimization, eigenvalue,

cross-validation, two-sample testing, portfolio optimization
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1 Introduction

We consider the problem of regularized covariance estimation. It is well known that, given

n independent samples x1, · · · , xn ∈ R
p from a zero-mean p-variate distribution, the sample

covariance matrix given by,

S =
1

n

n∑

i=1

xix
T
i ,

maximizes the log-likelihood of a zero-mean p-variate Gaussian distribution

l(Σ) = log
n∏

i=1

1

(2π)p|Σ| 12
exp

(
−1

2
xTi Σ

−1xi

)

= −(np/2) log(2π)− (n/2)(Tr(Σ−1S)− log detΣ−1), (1)

where |Σ| and detΣ both denote the determinant of Σ, Tr(A) denotes the trace of A (An-

derson, 1970).

In recent years, the availability of high-throughput data from various applications has

pushed this problem to an extreme where, in many situations, the number of samples (n)

is often much smaller than the number of parameters. When n < p the sample covariance

matrix S is singular, not positive definite, and hence it cannot be inverted to compute

the precision matrix (the inverse of the covariance matrix), which is also needed in many

applications, for e.g., two-sample testing and mean-variance portfolio theory. Even when

n > p, the eigenstructure tends to be systematically distorted unless p/n is extremely small,

resulting in numerically ill-conditioned estimators for Σ; see Dempster (1972) and Stein

(1975). In multivariate two-sample testing, most test statistics involve inverting S, making

them incalculable for n < p. In mean-variance portfolio optimization (Luenberger, 1998;

Markowitz, 1952), an ill-conditioned covariance matrix may amplify estimation error present

in the mean return estimate (Ledoit and Wolf, 2004a; Michaud, 1989). A common approach

to mitigate the problem of numerical stability is regularization.
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In this paper, we propose regularizing the sample covariance matrix by imposing a con-

straint on its condition number. Instead of using the standard estimator S, we propose to

solve the following penalized maximum likelihood (ML) estimation problem

maximize l(Σ)

subject to cond(Σ) ≤ κmax,
(2)

where cond(M) stands for the condition number, a measure of numerical stability, of a

matrix M . M is invertible if cond(M) is finite, and is ill-conditioned if cond(M) is finite

but high. By bounding the condition number of the sample estimate by a regularization

parameter κmax, we address the problem of invertibility or ill-conditioning directly. It turns

out that the resulting regularized matrix falls into a broad family of Steinian type shrinkage

estimators, which shrink the eigenvalues of the sample covariance matrix towards a given

structure (James and Stein, 1961; Stein, 1956).

Numerous authors have explored alternative estimators for Σ (or Σ−1) that perform better

than the sample covariance estimator S from a decision-theoretic point of view. Many of

these estimators give substantial risk reductions compared to S in small sample sizes. Most

often these estimators are Steinian shrinkage estimators. A simple example is the family of

linear shrinkage estimators which take a convex combination of the sample covariance and

a suitably chosen target or regularization matrix. Ledoit and Wolf (2004b) study a linear

shrinkage estimator towards a specified target covariance matrix, and choose the optimal

shrinkage to minimize the Frobenius norm risk. Bayesian approaches often directly yield

estimators which shrink towards a structure associated with a pre-specified prior. Standard

Bayesian covariance estimators yield a posterior mean Σ that is a linear combination of S

and the prior mean. It is easy to show that the eigenvalues of such estimators are also linear

shrinkage estimators of the eigenvalues of Σ; see, e.g., Haff (1991). To list a few nonlinear

Steinian estimators, James and Stein (1961) study a constant risk minimax estimator and
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its modification in a class of orthogonally invariant estimators. Dey and Srinivasan (1985)

provide another minimax estimator which dominates the James-Stein estimator. Yang and

Berger (1994) and Daniels and Kass (2001) consider a reference prior and hierarchical priors

respectively, that yield posterior shrinkage toward a specified structure.

Likelihood-based approaches using multivariate Gaussian models have provided different

perspectives to the regularization problem. Warton (2008) derives a novel family of linear

shrinkage estimators from a penalized maximum likelihood framework. This formulation

enables cross-validating the regularization parameter. He also studies the application of his

estimator to testing equality of means of two populations. Related work in the area include

Sheena and Gupta (2003). An extensive literature review is not undertaken here but we

note that the approaches mentioned above fall in the class of covariance estimation problems

which do not assume or impose sparsity, on either the covariance matrix or its inverse.

1.1 Regularization by shrinking sample eigenvalues

We briefly review Steinian shrinkage estimators. Letting li, i = 1, . . . , p, be the eigenvalues of

the sample covariance matrix (sample eigenvalues) in nonincreasing order (l1 ≥ . . . ≥ lp ≥ 0),

we can decompose the sample covariance matrix as

S = Qdiag(l1, . . . , lp)Q
T , (3)

where diag(l1, . . . , lp) is the diagonal matrix with diagonal entries li and Q ∈ R
p×p is the

orthogonal matrix whose i-th column is the eigenvector that corresponds to the eigenvalue

li. Shrinkage estimators regularizes S by transforming its eigenvalues:

Σ̂ = Qdiag(λ̂1, . . . , λ̂p)Q
T . (4)
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Typically, sample eigenvalues are shrunk to be more centered, so that the transformed eigen-

spectrum is less spread than that of the sample covariance matrix. In many estimators, the

shrunk eigenvalues are in the same order as those of S: λ̂1 ≥ · · · ≥ λ̂p.

Many regularization schemes for covariance matrices rely explicitly or implicitly on the

concept of shrinking the eigenvalues of the sample covariance matrix. In the linear shrinkage

estimator

Σ̂LS = (1− δ)S + δF, 0 ≤ δ ≤ 1 (5)

with the target matrix F = cI for some c > 0 (Ledoit and Wolf, 2004b; Warton, 2008), the

relationship between the sample eigenvalues li and the transformed eigenvalues λ̂i is affine:

λ̂i = (1− δ)li + δc

(If F does not commute with S, it does not have the form (4).) In Stein’s estimator (Stein,

1975, 1977, 1986), λ̂i are obtained by applying isotonic regression (Lin and Perlman, 1985)

to li/di, i = 1, . . . , p with di =
(
n− p + 1 + 2li

∑
j 6=i(li − lj)−1

)
/n, in order to maintain the

nonincreasing order constraint. In the penalized likelihood approach in Sheena and Gupta

(2003), depending on the eigenvalue constraints considered, the shrinkage rule is to truncate

the eigenvalues smaller than a given lower bound L (λ̂i = max{li, L}) or truncate the eigen-

values large than a given upper bound U (λ̂i = min{li, U}). By focusing on only one of the

two ends of the eigenspectrum, the resulting estimator does not correct for the overestimation

of the largest eigenvalues and underestimation of the small eigenvalues simultaneously and

hence does not address the distortion of the entire eigenspectrum – especially in relatively

small sample sizes. Moreover, the choice of regularization parameter (L or U) needs to be

investigated.
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1.2 Regularization by imposing a condition number constraint

The condition number of a positive definite matrix Σ is defined as

cond(Σ) = λmax(Σ)/λmin(Σ)

where λmax(Σ) and λmin(Σ) are the maximum and the minimum eigenvalues of Σ, respec-

tively.

The likelihood approach to regularizing the sample estimate of a covariance matrix by

constraining its condition number (2) can then be formulated as

maximize l(Σ)

subject to λmax(Σ)/λmin(Σ) ≤ κmax.
(6)

(An implicit condition is that Σ is symmetric and positive definite.) This problem is a

generalization of the problem considered in Sheena and Gupta (2003), where only either

lower bound or upper bound is considered.

The covariance estimation problem (6) can be reformulated as a convex optimization

problem, and so can be efficiently solved using standard methods such as interior-point

methods when the number of variables (i.e., entries in the matrix) is modest, say, under

1000. Since the number of variables is about p(p+ 1)/2, the limit is around p = 45.

In Section 2, we show that the regularized covariance matrix Σ̂cond that solves (6) has a

Steinian shrinkage form in (4) as

Σ̂cond = Qdiag(λ̂i, . . . , λ̂p)Q
T , (7)

with the eigenvalues

λ̂i = min
(
max(τ ⋆, li), κmaxτ

⋆
)
, (8)
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Figure 1: Comparison of eigenvalue shrinkage of the linear shrinkage estimator (left)
and the condition number-constrained estimator (right).

for some τ ⋆ > 0. In other words, even when the sample size is smaller than the dimension,

i.e., n < p, the nonlinear shrinkage estimator Σ̂cond is well-defined. Moreover, the optimal

lower bound τ ⋆ can be found easily with computational effort O(p log p), and hence the

estimator with the shrinkage rule (8) scales well to much larger size estimation problems,

compared with standard solution methods for (6).

The nonlinear transform (8) has a simple interpretation: the eigenvalues of the estimator

Σ̂cond are obtained by truncating the eigenvalues of the sample covariance larger than κmaxτ
⋆

or smaller than τ ⋆, where τ ⋆ is determined by the data and the choice of the regularization

parameter κmax. Figure 1 illustrates the transform (8) in comparison with that of the linear

shrinkage estimator.

An important issue in this regularization scheme is the selection of κmax. We propose a

selection procedure that minimizes predictive risk approximated using cross-validation. We

show that, for a fixed p, the chosen κ̂max converges in probability to the condition number of

the true covariance matrix as n increases. Furthermore, our numerical study indicates that

the selected κ̂max decreases as p increases. The variance of κ̂max decreases when either n or
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p increases.

1.3 The outline

In the next section, we derive the regularized covariance matrix as a solution to the maximum

likelihood estimation problem (6). We offer a solution algorithm and provide a geometric

interpretation of the derived estimator, elucidating properties of the estimator. We also show

that the regularized covariance matrix dominates asymptotically the sample covariance ma-

trix for a chosen risk function. We then propose to estimate the regularization parameter

κmax by minimizing predictive risk in Section 3. In Section 4, we give a Bayesian interpreta-

tion of the estimator; we show that the prior on the eigenvalues implied by the conditioned

number constraint is improper whereas the posterior yields a proper distribution. We il-

lustrate two applications of the proposed regularization scheme. In Section 5, we explore

its use for inference in two-sample problems. In Section 6, we describe the application in

mean-variance portfolio optimization. Finally, we give our conclusions in Section 7. The

proofs of the theoretical results discussed in the text are collected in the appendices.

2 Estimation of the condition number-regularized co-

variance matrices

This section gives the details of the solution (7) and shows how to compute τ ⋆ given κmax.

It suffices to consider the case κmax < l1/lp = cond(S), since otherwise the solution to (6)

reduces to the sample covariance matrix S.
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2.1 Derivation

It is well known that the log-likelihood (1) is a convex function of Ω = Σ−1 The condition

number constraint on Ω is equivalent to the existence of u > 0 such that uI � Σ−1 � κmaxuI

where A � B denotes that B − A is positive semidefinite. Since cond(Σ) = cond(Σ−1), the

covariance estimation problem (6) is equivalent to

minimize Tr(ΩS)− log detΩ

subject to uI � Ω � κmaxuI,
(9)

with variables Ω = ΩT ∈ R
p×p and u > 0. This problem is a convex optimization problem

with p(p+ 1)/2 + 1 variables (Boyd and Vandenberghe, 2004, Chap. 7).

We now show an equivalent formulation with p + 1 variables. Recall the spectral de-

composition of the sample covariance matrix S = QLQT , with L = diag(l1, . . . , lp) and

l1 ≥ . . . ≥ lp ≥ 0. Suppose the variable Ω has the spectral decomposition RΛ−1RT , with R

orthogonal and Λ−1 = diag(µ1, . . . , µp). Then the objective of (9) is

Tr(ΩS)− log det(Ω) = Tr(RΛ−1RTQLQT )− log det(RΛ−1RT )

= Tr(Λ−1RTQLQTR)− log det(Λ−1)

≥ Tr(Λ−1L)− log det(Λ−1).

The equality holds when R = Q (Farrell, 1985, Ch. 14). Therefore we can obtain an equiv-

alent formulation of (9)

minimize
∑p

i=1(liµi − log µi)

subject to u ≤ µi ≤ κmaxu, i = 1, . . . , p,
(10)

where the variables are now the eigenvalues µ1, . . . , µp of Λ−1, and u. Let µ⋆
1, . . . , µ

⋆
p, u

⋆
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solve (10). The solution to (9) is then

Ω⋆ = Qdiag(µ⋆
1, . . . , µ

⋆
p)Q

T .

We can reduce (10) to an equivalent univariate convex problem. We start by observing

that (10) is equivalent to

minimize
∑p

i=1minu≤µi≤κmaxu(liµi − log µi). (11)

Observe that the objective is a separable function of µ1, . . . , µp. For a fixed u, the minimizer

of each internal term of the objective of (11) is given as

µ⋆
i (u) = argmin

u≤µi≤κmaxu
(liµi − log µi) = min

{
max{u, 1/li}, κmaxu

}
. (12)

Then (10) reduces to an unconstrained, univariate optimization problem

minimize

p∑

i=1

J (i)
κmax

(u), (13)

where

J (i)
κmax

(u) = liµ
⋆
i (u)− log µ⋆

i (u) =





li(κmaxu)− log(κmaxu), u < 1/(κmaxli)

1 + log li, 1/(κmaxli) ≤ u ≤ 1/li

liu− log u, u > 1/li.

This problem is convex, since each J
(i)
κmax is convex in u. It follows that we can express the

solution explicitly:
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Theorem 1. Provided that κmax < cond(S), (13) has the unique solution

u⋆ =
α + p− β + 1∑α

i=1 li +
∑p

i=β κmaxli
, (14)

where α ∈ {1, . . . , p} is the largest index such that 1/lα < u⋆ and β ∈ {1, . . . , p} is the

smallest index such that 1/lβ > κmaxu
⋆. α and β are not determined a priori but can be

found in O(p) operations on the sample eigenvalues l1 ≥ . . . ≥ lp. If κmax > cond(S), the

maximizer u⋆ is not unique but Σ̂cond = S for all the maximizers.

Proof. Given in Supplemental Section A.

From the solution u⋆ to (13), we can write the solution (7) as

Σ̂cond = Qdiag(λ̂⋆1, . . . , λ̂
⋆
p)Q

T ,

where

λ̂i = 1/µ⋆
i = min

{
1/u⋆,max{1/(κmaxu

⋆), li}
}

solves the covariance estimation problem (6). The eigenvalues of this solution have the

form (8), with

τ ⋆ = 1/(κmaxu
⋆) =

∑α
i=1 li/κmax +

∑p
i=β li

α + p− β + 1
.

Note that the lower cutoff level τ ⋆ is an average of the (scaled and) truncated eigenvalues,

in which the eigenvalues above the upper cutoff level κmaxτ
⋆ are shrunk by 1/κmax.

We note that the current univariate optimization method for estimation of the condition

number-regularized covariance matrices is useful for high dimensional problems and is only

limited by the complexity of spectral decomposition of the sample covariance matrix (or the

singular value decomposition of the data matrix). Our method is therefore much faster than

using interior point methods. We close by noting that this form of estimator is guaranteed
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to be orthogonally invariant: if the estimator of the true covariance matrix Σ is Σ̂cond,

the estimator of the true covariance matrix UΣUT , where U is an orthogonal matrix, is

UΣ̂condU
T .

2.2 A geometric perspective and the regularization path

A simple relaxation of (9) provides an intuitive geometric perspective to the original problem.

Consider a function

J(u, v) = min
uI�Ω�vI

(Tr(ΩS)− log detΩ) (15)

defined as the minimum of the objective of (9) over a fixed range uI � Ω � vI, where

0 < u ≤ v. Following the argument that leads to (11), we can show that

J(u, v) =

p∑

i=1

min
u≤µi≤v

(liµi − log µi).

Let α ∈ {1, . . . , p} be the largest index such that 1/lα < u and β ∈ {1, . . . , p} be the smallest

index such that 1/lβ > v. Then we can easily show that

J(u, v) =

p∑

i=1

(liµ
⋆
i (u, v)− log µ⋆

i (u, v))

=
α∑

i=1

(liu− log u) +

β−1∑

i=α+1

(1 + log li) +

p∑

i=β

(liv − log v),

where

µ⋆
i (u, v) = min

{
max{u, 1/li}, v

}
=





u, 1 ≤ i ≤ α

1/li, α < i < β

v, β ≤ i ≤ p.

Comparing this to (12), we observe that Ω⋆, which achieves the minimum in (15), is obtained

by truncating the eigenvalues of S greater than 1/u and less than 1/v.
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The function J(u, v) has the following properties:

1. J does not increase as u decreases and v increases.

2. J(u, v) = J(1/l1, l/lp) for u ≤ 1/l1 and v ≥ 1/lp. For these values of u and v,

(Ω⋆)−1 = S.

3. J(u, v) is almost everywhere differentiable in the interior of the domain {(u, v)|0 < u ≤

v}, except for on the lines u = 1/l1, . . . , 1/lp and v = 1/l1, . . . , 1/lp.

We can now see the following obvious relation between the function J(u, v) and the

original problem (9): the solution u⋆ to (9) is the minimizer of J(u, v) on the line v = κmaxu,

i.e., Jκmax(u) = J(u, κmaxu). We denote this minimizer by u⋆(κmax).

It would be useful to know how u⋆(κmax) behaves as κmax varies. The following result

tells us that it has a monotonicity property.

Proposition 1. u⋆(κmax) is nonincreasing in κmax and v⋆(κmax) , κmaxu
⋆(κmax) is nonde-

creasing, both almost surely.

Proof. Given in Supplemental Section B.

We can plot the path of the optimal point (u⋆(κmax), v
⋆(κmax)) on the u-v plane from

(u⋆(1), u⋆(1)) to (1/l1, 1/lp) by varying κmax from 1 to cond(S). Proposition 1 states that,

for κ̃max > κmax, the new optimal point (u⋆(κ̃max), v
⋆(κ̃max)) lies on the line segment between

the two points expressed in terms of the previous optimal point (u⋆(κmax), v
⋆(κmax)):

(
κmax

κ̃max

u⋆(κmax), v
⋆(κmax)

)
,

(
u⋆(κmax),

κ̃max

κmax

v⋆(κmax)

)
.

The proposition also implies that the optimal truncation range
(
τ ⋆(κmax), κmaxτ

⋆(κmax)
)
of

the sample eigenvalues is nested: once an eigenvalue li is truncated for κmax = ν0, then it
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Figure 2: Regularization path of the condition number constrained estimator. (a)
Path of (u⋆(κmax), v

⋆(κmax)) on the u-v plane, for sample eigenvalues (21, 7, 5.25, 3.5, 3)
(thick curve). (b) Regularization path of the same sample eigenvalues as a function of
κmax.

keeps truncated for all κmax < ν0. Hence we have quite a concrete idea of the regularization

path of the sample eigenvalues.

Figure 2 illustrates the procedure described above. The left panel shows the path

of (u⋆(κmax), v
⋆(κmax)) on the u-v plane for the case where the sample eigenvalues are

(21, 7, 5.25, 3.5, 3). Here a point on the path represents the minimizer of J(u, v) on a line

v = κmaxu (hollow circle). The path starts from a point on the solid line v = u (κmax = 1,

square) and ends at (1/l1, 1/lp), where the dashed line v = cond(S)u passes (κmax = cond(S),

solid circle). Note that the starting point corresponds to Σ̂cond = γI for some γ > 0 and the

end point to Σ̂cond = S. When κmax > cond(S), multiple values of u⋆ are achieved in the

shaded region above the dashed line, nevertheless yielding the same estimator S. The right

panel of Figure 2 shows how the eigenvalues of the estimated covariance vary as a function

of κmax. Here we see that the truncation ranges of the eigenvalues are nested.
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2.3 Risk property

We now show that the condition number-regularized covariance matrix Σ̂cond has asymptot-

ically lower risk with respect to the entropy loss than the sample covariance matrix S. The

entropy loss, also known as Stein’s loss function, is defined as follows.

Lent(Σ̂,Σ) = Tr(Σ−1Σ̂)− log det(Σ−1Σ̂)− p.

Recall that λ1, . . . , λp, with λ1 ≥ · · · ≥ λp, are the eigenvalues of the true covariance matrix

Σ and Λ = diag
(
λ1, . . . , λp

)
. We further define λ =

(
λ1, . . . , λp

)
, λ−1 =

(
λ−1
1 , . . . , λ−1

p

)
, and

κ = λ1
/
λp.

First consider a trivial case in which p/n converges to some constant γ ≥ 1. In this

case, the sample covariance matrix S is singular regardless of Σ being singular or not, and

Lent(S,Σ) = ∞, whereas both the loss and risk of Σ̂cond are finite. Thus, Σ̂cond has smaller

entropy risk than S.

For γ < 1, if the true covariance matrix of the samples has a finite condition number, we

can show that for a properly chosen κmax, Σ̂cond = Σ̂(u⋆) dominates the sample covariance

matrix asymptotically.

Theorem 2. Consider a collection of covariance matrices whose condition numbers are

bounded above by κ and whose smallest eigenvalue is bounded below by u > 0:

D(κ, u) =
{
Σ = RΛRT : R othogonal, Λ = diag(λ1, . . . , λp), u ≤ λp ≤ . . . ≤ λ1 ≤ κu

}
.

Then, the following results hold.

(i) For a true covariance matrix Σ ∈ D(κmax, u), Σ̂(u), which solves (9) for the given u

(and κmax), has a smaller risk than the sample covariance matrix S with respect to the

entropy loss.
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(ii) For a true covariance matrix Σ whose condition number is bounded above by κ, if

κmax ≥ κ
(
1−√γ

)−2
, then as p

/
n→ γ ∈ (0, 1),

P

(
u⋆ ∈

{
u : Σ ∈ D

(
κmax, u

)}
eventually

)
= 1,

where u⋆ is the solution to (13) for the given κmax.

Proof. Given in Supplemental Section C.

3 Selection of regularization parameter κmax

We have discussed so far how the optimal truncation range (τ ⋆, κmaxτ
⋆) is determined for a

given regularization parameter κmax, and how it varies with the value of κmax. We describe

in this section a criterion for selecting an optimal κmax.

3.1 Predictive risk selection procedure

We propose to select κmax that minimizes the predictive risk, or the expected negative pre-

dictive log-likelihood

PR(ν) = E

[
EX̃

{
Tr(Σ̂−1

ν X̃X̃T )− log det Σ̂−1
ν

}]
, (16)

where Σ̂ν is the estimated condition number-regularized covariance matrix given independent

samples x1, · · · , xn from a zero-mean Gaussian distribution on R
p, with the value of the

regularization parameter κmax set to ν, and X̃ ∈ R
p is a random vector, independent of

the given samples, from the same distribution. We approximate the predictive risk using

K-fold cross validation. K-fold cross validation divides the data matrix X = (xT1 , · · · , xTn )

into K groups so that XT =
(
XT

1 , . . . , X
T
K

)
with nk observations in the k-th group. For the
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k-th iteration, each observation in the k-th group Xk plays the role of X̃ in (16), and the

remaining K − 1 groups are used together to estimate the covariance matrix, denoted by

Σ̂
[−k]
ν . The approximation of the predictive risk using the k-th group reduces to the predictive

log-likelihood

lk
(
Σ̂[−k]

ν , Xk

)
= −(nk/2)

[
Tr
{(

Σ̂[−k]
ν

)−1
XkX

T
k /nk

}
− log det

(
Σ̂[−k]

ν

)−1
]
.

The estimate of the predictive risk is then defined as

P̂R(ν) = − 1

n

K∑

k=1

lk
(
Σ̂[−k]

ν , Xk

)
. (17)

As the an optimal value for the regularization parameter κmax, we select ν that minimizes

(17),

κ̂max = inf
{
ν| P̂R(ν) ≤ P̂R(ν ′), ∀ν ′ ≥ 1

}
.

Note that lk
(
Σ̂

[−k]
ν , Xk

)
is constant for ν ≥ cond(S[−k]), where S[−k] is the k-th fold sample

covariance matrix based on the remaining q− 1 groups. This justifies the use of the smallest

minimizer.

3.2 Properties of the optimal regularization parameter

It is natural to expect that the optimal regularization parameter κ̂max has the following

properties:

(P1) For a fixed p, as n increases, κ̂max approaches to the condition number κ of the true

covariance matrix Σ in probability.

(P2) If the condition number of the true covariance matrix remains finite as p increases,

then for a fixed n, κ̂max approaches to 1.
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(P3) κ̂max decreases as p increases.

(P4) The variance of κ̂max decreases as either n or p increases.

These properties are compatible with the properties of the optimal regularization parameter

δ̂ of the linear shrinkage estimator found using the same predictive risk criterion (Warton,

2008). The difference is that κ̂max shrinks the sample eigenvalues non-linearly whereas δ̂

does linearly.

Because the proposed selection procedure is based on minimizing a numerical approxi-

mation of the predictive risk, it is not straightforward to formally validate all the properties

given above. At least for (P1), we are able to do so.

Theorem 3. For a given p,

lim
n→∞

P
(
κ̂max = κ

)
= 1.

Proof. Given in Supplemental Section D.

We resort to numerical methods to demonstrate (P2)–(P4). To this end, we use data

sets sampled from zero-mean p-variate Gaussian distributions with the following covariance

matrices:

(i) Identity matrix in R
p.

(ii) diag(1, r, r2, . . . , rp), with condition number 1/rp = 5.

(iii) diag(1, r, r2, . . . , rp), with condition number 1/rp = 400.

(iv) Toeplitz matrix whose (i, j)th element is 0.3|i−j| for i, j = 1, . . . , p.

We consider all combinations of n ∈ {20, 80, 320} and p ∈ {5, 20, 80}. For each of these

cases, we generate 100 replicates and compute κ̂max with 5-fold cross validation. The results,

plotted in Figure 3, indeed show that the optimal κ̂max chosen by the proposed selection

procedure satisfies the properties (P1)–(P4).
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Figure 3: Distribution of κ̂max for dimensions 5, 20, 80, and for sample sizes 20,
80, 320, with covariance matrices (a) identity (b) diagonal exponentially decreasing,
condition number 5, (c) diagonal exponentially decreasing, condition number 400, (d)
Toeplitz matrix whose (i, j)th element is 0.3|i−j| for i, j = 1, 2, . . . , p.
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4 Bayesian interpretation

Tibshirani (1996) gives a Bayes interpretation for the regularization method Lasso and points

outs that in the regression setting, the Lasso solution is equivalent to obtaining the posterior

mode when putting a double exponential (Laplace) prior on the regression coefficients. In the

same spirit, we can draw parallels for the regularization of covariance matrices by imposing

the condition number constraint.

The condition number constraint given by λ1(Σ)/λp(Σ) ≤ κmax is equivalent to adding

a penalty term gmaxλ1(Σ)/λp(Σ) to the likelihood equation for the eigenvalues. This equiv-

alence follows from considering the Lagrangian function (see Gill et al. (1982, Chapter 5)).

The condition number-regularized covariance matrix estimation problem (6) can therefore

be written in terms of the likelihood of the eigenvalues and the penalty as

maximize exp
(
−n

2

∑p
i=1

li
λi

)
(
∏p

i=1 λi)
−n

2 exp
(
−gmax

λ1

λp

)

subject to λ1 ≥ · · · ≥ λp > 0

The above expression allows us to see the condition number-regularized covariance matrix

as the Bayes posterior mode under the following prior

π(λ1, . . . , λp) = exp

(
−gmax

λ1
λp

)
, λ1 ≥ · · · ≥ λp > 0 (18)

for the eigenvalues and an independent Haar measure on the Stiefel manifold as the prior for

the eigenvectors. The prior on the eigenvalues has certain interesting properties which help

to explain the type of “truncation” of the eigenvalues as described in the previous sections.

First the prior is improper, and hence its properties are similar to a vague prior; but the

posterior is always proper.

Proposition 2. The prior on the eigenvalues implied by the conditioned number constraint
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is improper whereas the posterior yields a proper distribution. More formally,

∫

C

π(λ
˜

)dλ
˜

=

∫

C

exp

(
−gmax

λ1
λp

)
dλ
˜

=∞,

and

∫

C

π(λ
˜

)f(λ
˜

, l
˜

)dλ
˜

∝
∫

C

exp

(
−n
2

p∑

i=1

li
λi

)(
p∏

i=1

λi

)−n
2

exp

(
−gmax

λ1
λp

)
dλ
˜

<∞,

where C =
{
λ
˜

: λ1 ≥ · · · ≥ λp > 0
}
.

Proof. Given in Supplemental Section E.

The prior above also puts the greatest mass around the region
{
λ
˜

∈ R
p : λ1 = · · · = λp

}

which consequently encourages shrinking or pulling the eigenvalues closer together. Note that

the support of both the prior and the posterior is the entire space of the ordered eigenvalues.

So the prior by itself does not give a hard constraint on the condition number. Evaluating

the maximum a posteriori estimate (MAP) yields an estimator that satisfies the condition

number constraint.

A clear picture of the regularization achieved by the prior above and its potential for

“eigenvalue clustering” emerges when compared to the other types of priors suggested in

the literature and the corresponding Bayes estimators. The standard MLE of course implies

a completely flat prior on the constrained space C. A commonly used prior for covariance

matrices is the conjugate prior as given by the inverse Wishart distribution. The scale hyper-

parameter is often chosen to be a multiple of the identity, i.e., Σ−1 ∼ Wishart(m, cI), so

that this prior yields a posterior mode which is a linear shrinkage estimator (5) with δ =

m/(n+m). Note however that the coefficients of the combination do not depend of the data

X and only on the sample size n and m, the degrees of freedom or shape parameter from the

prior. The Ledoit-Wolf estimator (Ledoit and Wolf, 2004b) chooses δ under a data-dependent
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optimality – though this estimator is more difficult to interpret as a Bayesian posterior

mode. Yet another useful prior for covariance matrices is the reference prior proposed by

Yang and Berger (1994). In this prior the eigenvalues are inversely proportional to the

determinant
∏p

i=1 λi of the the covariance matrix, encouraging shrinkage of the eigenvalues –

though unlike the Ledoit-Wolf estimator, the motivation for the reference prior does not stem

from obtaining well-conditioned estimators in high-dimensional problems. The posterior

mode using this reference prior can be formulated similarly to that of condition number

regularization:

argmaxλ1≥···≥λp>0 exp

(
−n
2

p∑

i=1

li
λi

)(
p∏

i=1

λi

)−n
2

1∏p
i=1 λi

= argminλ1≥···≥λp>0

n

2

p∑

i=1

li
λi

+
n+ 2

2

p∑

i=1

log λi.

However, an examination of the penalty implied by the reference prior suggests that there

is no direct penalty on the condition number. In Supplemental Section F we illustrate the

density of the priors discussed above in the two-dimensional case. In particular, the density

of the “condition number regularization” prior places more emphasis on the line λ1 = λ2 thus

“squeezing” the eigenvalues together. This is in direct contrast with the inverse Wishart or

reference priors where this effect is not as severe.

5 Application to two-sample testing

5.1 Intuition

We investigate the use of the condition number-regularized covariance matrix Σ̂cond for testing

a hypothesis about the means in two-sample problems. Consider a test statistic T (X) based

on the data matrixX = (xT1 , . . . , x
T
n ). Warton (2008, Theorem 5) shows that for test statistics
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of the form T (X) = g(ΩXS
−1/2) and TLS(X) = g(ΩXΣ̂

−1/2
LS ) that uses the linear shrinkage

estimator in place of the sample covariance matrix, where g(·) is some function, ΩX is some

matrix of effects, and S is the sample covariance matrix,

T (X) = g(ΩZdiag(l
−1/2
1 , . . . , l−1/2

p )QT ),

and

TLS(X) = g(ΩZdiag(((1− δ)l1 + δγ)−1/2, . . . , ((1− δ)lp + δγ)−1/2)QT ),

with ΩZ = ΩXQ and Q from the spectral decomposition (3) of S. An obvious extension of

this result to the condition number-regularized covariance matrix is

Tcond(X) = g(ΩZdiag(λ̂
−1/2
1 , . . . , λ̂−1/2

p )QT ),

where

λ̂i = min
(
max(τ ⋆, li), κmaxτ

⋆
)
.

All of these test statistics are of the same form. The only difference is in the relative weighting

imposed to the columns of ΩZ , the effects expressed in the directions of the eigenvectors of

S.

For the regularized test statistics TLS(X) and Tcond(X), power is expected to increase

when effects are expressed along the eigenvectors associated with largest eigenvalues and to

decrease otherwise, as they both shrink largest eigenvalues and inflates smallest eigenvalues.

They differ mostly in how they treat middle eigenvalues. While Tcond(X) leaves them intact,

TLS(X) shrinks some and inflate the others. Consider three scenarios that contrasts the

difference between these test statistics for p = 3: when effects are expressed along 1) the

eigenvector associated with the largest eigenvalue, 2) the eigenvector associated with the

smallest eigenvalue, and 3) the eigenvector associated with the middle eigenvalue. For each of
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the scenarios, TLS bears two cases: one that shrinks the middle eigenvalue (case 1), the other

that inflates it (case 2). The test statistics can be understood to evaluate distance between

two ellipsoids whose shapes are determined by the estimate of the common covariance matrix

and only centers differ. In scenario 1, both regularization schemes render the ellipsoids

further apart, improving the power compared to that of T (X). In scenario 2, Tcond(X) does

not shrink the ellipsoid in the direction of the effect, thus the power does not change. On

the other hand, case 1 for TLS(X) shrinks the ellipsoid while case 2 inflates. Hence the

power may be improved or reduced. In scenario 3, the ellipsoids are brought closer to each

other by both regularization scheme, and the power is reduced. Scenario 2, which reveals

the difference between Tcond(X) and TLS clearly, is illustrated in Figure 4. Illustration of the

other scenarios can be found in Supplemental Section G.

v1

v2

v3
(a) T (X)

v1

v2

v3
(b) Tcond(X)

v1

v2

v3
(c) TLS(X), case 1

v1

v2

v3
(d) TLS(X), case 2

Figure 4: Schematic diagram illustrating the effects of regularization on the two-
sample test statistic T (X) in three dimensions. Each of the two ellipsoids are visualized
by three ellipses projected onto the planes made of pairs of eigenvectors. Means differ
along the eigenvector (v2) associated with the middle eigenvalue.

5.2 Power simulation

We demonstrate power properties of Tcond(X) and TLS(X) by numerical simulations. In

each simulation we generate two sets of independent samples, of respective sizes n1 and n2,
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from the p-variate Gaussian distribution having a common covariance matrix Σ, with mean

vectors µ1 = 0 and µ2 shifted from 0. We consider three types of shifts:

• (first) Along the eigenvector of Σ associated with the largest eigenvalue by a
√
pλ1 units

• (last) Along the eigenvector of Σ associated with the smallest eigenvalue by a
√
pλp

units

• (upper) Along the eigenvectors associated with the largest half eigenvalues: a
√
2λi

units along the i-th eigenvector of Σ, i = 1, . . . , ⌊p/2⌋

• (lower) Along the eigenvectors associated with the smallest half eigenvalues: a
√
2λi

units along the i-th eigenvector of Σ, i = ⌊p/2⌋+ 1, . . . , p

• (all) Along all eigenvectors: a
√
λi units along the i-th eigenvector of Σ, i = 1, . . . , p.

For each of the shifts, we test the null hypothesis H0 : µ1 = µ2 using the regularized versions

(i.e., TLS(X) and Tcond(X)) ) of T (X) = −2 log(Λ), where Λ is Wilks’ lambda statistic

(Mardia et al., 1980), Λ = |(n1 + n2)Σ̂|/|(n1 + n2)Σ̂ +B| = 1/|I + Σ̂−1/2BΣ̂−1/2/(n1 + n2)|,

where B is the between-groups matrix. As a reference, we also employed T−(X), in which

the Moore-Penrose inverse is used in place of Σ̂−1 in T (X).

We use n1 = n2 = 10, p ∈ {5, 10, 20}, Σij = ρ|i−j| with ρ ∈ {0.3, 0.5} (i.e., AR(1) struc-

ture with unit variance), and a = 0.3 to obtain intermediate power for most of the simulation

scenarios. We use the Ledoit-Wolf optimality in choosing the regularization parameter δ for

TLS(X) and the predictive risk (16) in selecting κmax for Tcond(X)). We use permutation

tests where the P -values are computed from 999 permutations of group membership labels

for the n1 + n2 observations. The two samples are adjusted to have equal sample means,

following the recipe of Warton (2008). We estimate power of TLS(X), Tcond(X) and T−(X)

from 400 data sets for each p and ρ by counting the number of data sets which reject H0, at

the significance levels .10 and .05, respectively.
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The results, which can be found in Supplemental Section H, show that TLS(X) and

Tcond(X) behave similarly. This is expected from the regularization pattern discussed in the

previous section. In particular,

• Power of TLS(X) and Tcond(X) tends to increase as p increases. This behavior is con-

sistent with that reported by Warton (2008).

• Power of T−(X) tends to be smallest at p = 10. This behavior is also reported by

Warton (2008).

• Power is relatively high when the effects are expressed along the eigenvectors associated

with large eigenvalues (“first” and “upper”). TLS(X) seems to have higher power when

the effect is one-dimensional (“first”), whereas Tcond(X) seems to have higher power

when the effect is multidimensional (“upper”).

• Power is relatively low when the effects are expressed along the eigenvectors associ-

ated with small eigenvalues (“last” and “lower”). Sometimes TLS(X) and Tcond(X)

are beaten by T−(X). TLS(X) seems to have higher power when the effect is one-

dimensional (“last”), whereas Tcond(X) seems to have higher power when the effect is

multidimensional (“lower”).

• When the effect is expressed in all dimensions by a small amount (“all”), the power is

intermediate between “upper” and “lower,” while Tcond(X) seems better.

The advantage of Tcond(X) over TLS(X) for the effects expressed in many directions can be

understood by virtue of Figure 4. When the effects involve eigenvectors associated with

middle eigenvalues, power increases if the middle eigenvalues are shrunk and decreases if

inflated. TLS(X) shrinks some of these eigenvalues and inflates the other some. Choosing

the border line is rather a gamble, and it appears that this gambling is not as good as having

them remain intact, which is what Tcond(X) does.
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6 Application to robust portfolio selection

This section illustrates the merits of the proposed regularization scheme in portfolio op-

timization. We consider a portfolio rebalancing strategy based on robust mean-variance

portfolio selection. A portfolio refers to a collection of risky assets held by an institution or

an individual. Over the holding period, the return on the portfolio is the weighted average

of the returns on the individual assets that constitutes the portfolio, where the weight of

each asset corresponds to its proportion in the portfolio. The portfolio optimization problem

concerns the weights that maximizes the return on the portfolio. However, since the asset

returns are stochastic, a portfolio always carries a risk of loss. The mean-variance portfolio

(MVP) theory (Markowitz, 1952) quantifies the risk of a portfolio with the standard devi-

ation of its returns. Estimation of the covariance of asset returns thus become crucial in

this setting. The other important component of the MVP theory is the expected return on

the portfolio. Unfortunately, it is extremely difficult to estimate the expected asset returns

(Luenberger, 1998; Merton, 1980). Since the focus of this paper lies in estimating covariance

matrices and not in expected returns, we cope with this difficulty by requiring the portfolio

to be robust to uncertainty in estimated expected asset returns. Indeed, the problem of

robust portfolio optimization is gaining popularity in financial literature (Ceria and Stubbs,

2006; Goldfarb and Iyengar, 2003; Tütüncü and Koenig, 2004).

We use the condition number-regularized covariance matrix, and two existing ones,

namely, a linear shrinkage estimator and the sample covariance matrix, in constructing a

robust mean-variance portfolio. We compare their performance over a period of more than

14 years.
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6.1 Robust mean-variance portfolio rebalancing

We begin with a formal description of the robust mean-variance portfolio selection problem.

The universe of assets consists of p risky assets, denoted 1, . . . , p. We use ri to denote

the return of asset i over a period, that is, its change in price over the unit time divided

by its price at the beginning of the period. Let Σ denote the covariance matrix, and µ the

expectation, of r = (r1, . . . , rp). We employ wi to denote the weight of asset i in the portfolio

held throughout the period. A long position in asset i corresponds to wi > 0, and a short

position corresponds to wi < 0. Then the portfolio is unambiguously represented by the

vector of weights w = (w1, . . . , wp). Without loss of generality, the budget constraint can be

written as 1Tw = 1, where 1 is the vector of all ones.

In the MVP theory, the expected return of a portfolio w is denoted by µTw, and the risk

by the standard deviation (wTΣw)1/2. Then the mean-variance portfolio selection problem

maximizes a quadratic utility function as follows.

maximize µTw − γ
2
wTΣw

subject to 1Tw = 1,
(19)

where γ is the parameter of relative risk aversion. This is a simple quadratic program

that has an analytic solution. In practice, both µ and Σ should be estimated. As noted,

estimation of µ is much harder than that of Σ, and estimation error in µ has larger impact on

deviation of portfolio weights from its optimal value than that in Σ (DeMiguel and Nogales,

2009; Merton, 1980). In other words, plugging in a (regularized) sample covariance matrix

estimated from historical returns in place of Σ may suffice, but this is hardly true for µ.

As a means to introduce robustness to error in estimating µ, we consider a MVP that

utilizes a “worst-case” vector of expected returns (Ceria and Stubbs, 2006). Suppose we are

uncertain the expected return µ but know that it belongs to a set E with some confidence. We
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would like to maximize our utility for the worst-case expected portfolio return minµ∈E µ
Tw,

i.e.,

maximize minµ∈E µ
Tw − γ

2
wTΣw

subject to 1Tw = 1,
(20)

instead of (19). If we use the (historical) sample mean r as an estimator of µ, we can employ

a 100(1−α)% confidence ellipsoid for µ in place of E . Assume r follows a p-variate Gaussian

distribution and let Nestim be the size of the estimation horizon, i.e., the number of past data

points used to estimate µ and Σ. Then r ∼ N (µ, 1
Nestim

Σ) and

E = {µ : (µ− r)TΣ−1(µ− r) ≤ χ2
1−α(p)/Nestim},

where χ2
1−α(p) is the 100(1−α)% quantile of the chi-square distribution with p degrees of free-

dom. For this choice of E , it is easy to see that minµ∈E µ
Tw = rTw−(χ2

1−α(p)/Nestim)
1/2
√
wTΣw.

Now (20) becomes

maximize rTw − (χ2
1−α(p)/Nestim)

1/2
√
wTΣw − γ

2
wTΣw

subject to 1Tw = 1,
(21)

which is a convex optimization problem. We call (21) the robust mean-variance portfolio

selection problem.

The portfolio selection problem described above assumes that the returns are stationary,

which does not hold in reality. As a way of coping with the nonstationarity of returns,

we describe the robust mean-variance portfolio rebalancing (rMVR) strategy. Let r(t) =

(r
(t)
1 , . . . , r

(t)
p ) ∈ R

p, t = 1, . . . , Ntot, be the realized returns of assets at time t. (The time

unit can be a day, a week, or a month.) We consider periodic mean-variance rebalancing

in which the portfolio weights are updated in every L time units. After observing the close

prices of the assets at the end of each period, we select the robust mean-variance portfolio
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with the data available till the moment and hold it for the next L time units. Let Nestim be

the estimation horizon size, as defined above. For simplicity, we assume Ntot = Nestim+KL,

for some positive integer K, i.e., there will be K updates. (The last rebalancing is done at

the end of the entire period, and so the out-of-sample performance of the rebalanced portfolio

for this holding period is not taken into account.) We therefore have a series of portfolios

w(j) that solves

maximize r(j)Tw − (χ2
1−α(p)/Nestim)

1/2
√
wT Σ̂(j)w − γ

2
wT Σ̂jw

subject to 1Tw = 1,

over the holding periods of [Nestim +1+ (j− 1)L,Nestim + jL], j = 1, . . . , K. Here r(j) is the

sample mean, and Σ̂(j) is the covariance matrix, of the asset returns estimated from those

over the jth holding period.

6.2 Empirical out-of-sample performance

In this empirical study, we use the 30 stocks that constituted the Dow Jones Industrial

Average over the period from February 1994 to July 2008. (Supplemental Section I.1 lists

the 30 stocks.) We used adjusted close prices, namely, the closing prices day adjusted for all

applicable splits and dividend distributions, which were downloaded from Yahoo! Finance

(http://finance.yahoo.com/).

The whole period considered in our numerical study is from the first trading date in

March 2, 1992 to July 14, 2008. (This period consists of 4125 trading days.) The time unit

used in our study is 5 consecutive trading days, so we consider weekly returns. We take

Ntot = 825, L = 25, Nestim = 15, 30, 45, 60.

To estimate the covariance matrices, we use the last Nestim weekly returns of the constituents
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of the Dow Jones Industrial Average. Roughly in every half year, we rebalance the portfolio,

using a covariance estimate with past roughly two-year weekly return data. (Supplemental

Section I.2 shows the periods determined by the choice of the parameters.) The trading

period corresponds to K = 29 holding periods, which span the dates from February 18, 1994

to July 14, 2008.

In the sequel, we compare the rMVR strategy where the covariance matrices are estimated

using the condition number-regularization scheme with the rMVR strategies using the sample

covariance matrix and the linear shrinkage estimator under the Ledoit-Wolf optimality.

Performance metrics

We use the following quantities in assessing the performance of the rMVR strategies.

• Realized return. The realized return of the portfolio over the trading period.

• Realized risk. The realized risk (return standard deviation) of the portfolio over the

trading period.

• Realized utility. The realized value of the quadratic utility function of the portfolio

over the trading period.

• Turnover. Total amount of new portfolio assets purchased or sold over the trading

period.

• Normalized wealth growth. Accumulated wealth yielded by the portfolio over the trad-

ing period when the initial budget is normalized to one, taking the transaction cost

into account.

For precise formulae of these metrics, refer to Supplemental Section I.3. We assume that

the transaction costs are the same for the 30 stocks and set them to 30 basis points (bps).

We choose the relative risk aversion parameter γ = 25 and use a 95% (α = 0.05) confidence

ellipsoid for the expected return.
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Comparison results

Figure 5 shows the normalized wealth growth over the trading horizon from February 18, 1994

through July 14, 2008. (The sample covariance matrix failed in solving (21) for Nestim = 15

because of its singularity and hence omitted.) The rMVR strategy using the condition

number-regularized covariance matrix outperforms significantly the rMVR strategy using

the sample covariance matrix or the linear shrinkage estimator.

Rather surprisingly, there is no significant difference between the condition number reg-

ularization and the linear shrinkage in terms of MVP metrics. Supplemental Section I.4

summarizes the realized utility, the realized return, and the realized risk of each estimator

respectively averaged over the trading period. For all values of Nestim, the average differ-

ences of the metrics between the two regularization schemes are roughly within two standard

errors of those. On the other hand, both the condition number-regularized matrix and the

linear shrinkage estimator outperforms the sample covariance matrix especially when the

estimation horizon size Nestim is less than or moderately greater than the number of stocks

in the portfolio.

Then what makes the difference in wealth growth? It is turnover of the portfolio. In Ap-

pendix I.5 we can see that rMVR using the condition number-regularized covariance matrix

gives a far lower turnover and thus more stable weights than rMVR using the linear shrinkage

estimator or the sample covariance matrix. A lower turnover implies less transaction costs,

thereby contributing to the higher wealth growth. The stability of the rMVR portfolio using

the proposed estimator is an interesting phenomenon that calls for further research, as no

explicit effort was made to limit turnover.
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(b) Nestim = 30
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(c) Nestim = 45
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(d) Nestim = 60

Figure 5: Robust mean-variance rebalancing results for various estimation hori-
zon sizes over the trading period from February 18, 1994 through July 14, 2008.
sample=sample covariance matrix, LW=linear shrinkage using the Ledoit-Wolf opti-
mality, condreg=condition number regularization.
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7 Conclusions

In this paper we considered regularized covariance estimation by imposing a constraint on the

condition number in the Gaussian likelihood formulation. Regularization schemes that have

been proposed in the literature for high-dimensional covariance estimation do not directly

target the issue of invertibility and numerical stability of the estimate. We have emphasized

the importance of a numerically well-conditioned estimator of covariance matrices, especially

in practical applications such as two-sample testing and portfolio selection. A consequence of

this emphasis on numerical stability is the condition number-regularized maximum likelihood

estimator. We have shown that this regularization scheme involves optimal truncation of

the eigenvalues of the sample covariance matrix. The truncation range is shown to be

simple to compute. We have studied how the truncation range varies as a function of

the regularization parameter. We have explored the theoretical properties of the proposed

regularization and shown that the resulting estimator asymptotically dominates the sample

covariance estimator with respect to the entropy loss under a mild assumption. We have

also provided a cross-validated parameter selection procedure. The cross-validated estimator

demonstrates a desired performance in two-sample testing compared with other commonly

used estimators of covariance matrices. When applied to a real-world wealth management

problem, our regularization scheme performs very well, supporting its usefulness in a variety

of applications where a well-conditioned estimate of the covariance matrix is often required.
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Supplemental Materials

A Proof of Theorem 1

A.1 Uniqueness of the solution to (13)

The function J
(i)
κmax(u) is convex and is constant on the interval [1/(κmaxli), 1/li], where li is

the ith largest sample eigenvalue. It is strictly decreasing or increasing if u < 1/(κmaxli) or

u > 1/li, respectively. Thus, the function Jκmax(u) =
∑p

i=1 J
(i)
κmax(u) has a region on which it

is a constant if and only if

[
1/(κmaxl1), 1/l1

]⋂[
1/(κmaxlp), 1/lp

]
6= ∅,

or equivalently, 1/
(
κmaxlp

)
< 1/l1, i.e., κmax > cond(S). This is precisely the condition so

that the estimator reduces to the sample covariance matrix S. Therefore, provided that
κmax ≤ cond(S), the convex function Jκmax(u) does not have a constant region, hence has the
unique minimizer u⋆. On the other hand, if κmax > cond(S), the maximizer u⋆ is not unique

but µi(u
⋆) = li for every i = 1, . . . , p. Hence, for this case, Σ̂cond = S for all the maximizers.

A.2 An algorithm for solving (13)

Without loss of generality, we assume that κmax < l1/lp = cond(S). As discussed above, the

function Jκmax(u) ,
∑p

i=1 J
(i)
κmax(u) is strictly decreasing for u < 1/l1 and strictly increasing

for u ≥ 1/(κmaxlp). Therefore, it suffices to consider u ∈ I = [1/l1, 1/(κmaxlp)).
Suppose an oracle tells us the values of α and β, the largest index such that 1/lα < u⋆

and the smallest index such that 1/lβ > κmaxu
⋆, respectively. Then,

Jκmax(u) =
α∑

i=1

(li(κmaxu)− log(κmaxu)) +

β−1∑

i=α+1

(1 + log li) +

p∑

i=β

(liu− log u),

and the minimizer is immediately given by (14):

u⋆ =
α + p− β + 1∑α

i=1 li +
∑p

i=β κmaxli
.

Now the problem is how to determine α and β. The main idea is that, for a fixed α and
β, the value

uα,β =
α + p− β + 1∑α

i=1 li +
∑p

i=β κmaxli
.

coincides with u⋆ if and only if
1/lα < uα,β ≤ 1/lα+1 (22)
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and
1/lβ−1 ≤ κmaxuα,β < 1/lβ. (23)

The intersection of these two intervals is either empty or depending on the configuration of
l1, . . . , lp, κmax, one of the four intervals: (1/lα, 1/(κmaxlβ)], (1/lα, 1/lα+1], [1/(κmaxlβ−1),
1/(κmaxlβ)), and [1/(κmaxlβ−1), 1/lα+1], the interior of which no other 1/li or 1/(κmaxlj) lies
in. Starting from 1/l1, and by separately advancing the indexes for 1/li and 1/(κmaxlj) , we
can find α and β satisfying conditions (22) and (23), hence u⋆, in O(p) operations. Algorithm
1 describes the procedure. This procedure was first considered by Won and Kim (2006) and
is elaborated in this paper.

B Proof of Proposition 1

Recall that, for κmax = ν0,

u⋆(ν0) =
α + p− β + 1∑α
i=1 li + ν0

∑p
i=β li

and

v⋆(ν0) = ν0u
⋆(ν0) =

α + p− β + 1
1
ν0

∑α
i=1 li +

∑p
i=β li

,

where α = α(ν0) ∈ {1, . . . , p} is the largest index such that 1/lα < u⋆(ν0) and β = β(ν0) ∈
{1, . . . , p} is the smallest index such that 1/lβ > ν0u

⋆(ν0). Then

1/lα < u⋆(ν0) ≤ 1/lα+1

and
1/lβ−1 ≤ v⋆(ν0) < 1/lβ.

The lower and upper bounds u⋆(ν0) and v
⋆(ν0) of the reciprocal sample eigenvalues can be

divided into four cases:

1. 1/lα < u⋆(ν0) < 1/lα+1 and 1/lβ−1 < v⋆(ν0) < 1/lβ.
We can find ν > ν0 such that

1/lα < u⋆(ν) ≤ 1/lα+1

and
1/lβ−1 ≤ v⋆(ν) < 1/lβ.

Therefore,

u⋆(ν) =
α + p− β + 1∑α
i=1 li + ν

∑p
i=β li

<
α + p− β + 1∑α
i=1 li + ν0

∑p
i=β li

= u⋆(ν0)
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Algorithm 1 Solution method to the optimization problem (13)

Require: l1 ≥ . . . ≥ lp, 1 < κmax < l1/lp
1: α← 1, β ← 2, lowerbound← 1/l1
2: has lowerbound factor κmax ← true
3: loop

4: if (has lowerbound factor κmax) then
5: while (β ≤ p and 1/(κmaxlβ) ≤ 1/lα) do {increase β until 1/(κmaxlβ) > 1/lα}
6: β ← β + 1
7: end while

8: if (1/(κmaxlβ) < 1/lα+1) then {case 1}
9: upperbound← 1/(κmaxlβ)

10: has lowerbound factor κmax ← false
11: else {case 2}
12: upperbound← 1/lα+1

13: α← α+ 1
14: has lowerbound factor κmax ← true
15: end if

16: else

17: while (1/lα+1 ≤ 1/(κmaxlβ−1)) do {increase α until 1/lα+1 > 1/(κmaxlβ−1)}
18: α← α+ 1
19: end while

20: if ( 1/(κmaxlβ) < 1/lα+1 ) then {case 3}
21: upperbound← 1/(κmaxlβ)
22: α← α+ 1
23: has lowerbound factor κmax ← false
24: else {case 4}
25: upperbound← 1/lα+1

26: has lowerbound factor κmax ← true
27: end if

28: end if

29: uα,β ← (α+ p− β + 1)/(
∑α

i=1 li +
∑p

i=β κmaxli)
30: if (lowerbound ≤ u⋆α,β ≤ upperbound) then
31: u⋆ ← uα,β
32: end if

33: lowerbound← upperbound {proceed to the next interval}
34: end loop

and

v⋆(ν) =
α + p− β + 1

1
ν0

∑α
i=1 li +

∑p
i=β li

>
α + p− β + 1

1
ν

∑α
i=1 li +

∑p
i=β li

= v⋆(ν0).

2. u⋆(ν0) = 1/lα+1 and 1/lβ−1 < v⋆(ν0) < 1/lβ.
Suppose u⋆(ν) > u⋆(ν0). Then we can find ν > ν0 such that α(ν) = α(ν0) + 1 = α+ 1
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and β(ν) = β(ν0) = β. Then,

u⋆(ν) =
α + 1 + p− β + 1∑α+1

i=1 li + ν
∑p

i=β li
.

Therefore,

1

u⋆(ν0)
− 1

u⋆(ν)
= 1/lα+1 −

∑α+1
i=1 li + ν

∑p
i=β li

α + 1 + p− β + 1

=
(α + p− β + 1)lα+1 − (

∑α+1
i=1 li + ν

∑p
i=β li)

α + 1 + p− β + 1
> 0,

or

lα+1 >

∑α+1
i=1 li + ν

∑p
i=β li

α + p− β + 1
>

∑α+1
i=1 li + ν0

∑p
i=β li

α + p− β + 1
= lα+1,

which is a contradiction. Therefore, u⋆(ν) ≤ u⋆(ν0).
Then, we can find ν > ν0 such that α(ν) = α(ν0) = α and β(ν) = β(ν0) = β. This
reduces to case 1.

3. 1/lα < u⋆(ν0) < 1/lα+1 and v⋆(ν0) = 1/lβ−1.
Suppose v⋆(ν) < v⋆(ν0). Then we can find ν > ν0 such that α(ν) = α(ν0) = α and
β(ν) = β(ν0)− 1 = β − 1. Then,

v⋆(ν) =
α + p− β + 2

1
ν

∑α
i=1 li +

∑p
i=β−1 li

.

Therefore,

1

v⋆(ν0)
− 1

v⋆(ν)
= 1/lβ−1 −

∑α
i=1 li + ν

∑p
i=β−1 li

α + p− β + 2

=
(α + p− β + 1)lβ−1 − (

∑α
i=1 li + ν

∑p
i=β li)

α + p− β + 2
< 0,

or

lβ−1 <

∑α
i=1

1
ν
li +

∑p
i=β−1 li

α + p− β + 1
<

∑α+1
i=1

1
ν0
li +

∑p
i=β li

α + p− β + 1
= lβ−1,

which is a contradiction. Therefore, v⋆(ν) ≥ v⋆(ν0).
Then, we can find ν > ν0 such that α(ν) = α(ν0) = α and β(ν) = β(ν0) = β. This
reduces to case 1.

4. u⋆(ν0) = 1/lα+1 and v⋆(ν0) = 1/lβ−1. 1/lα+1 = u⋆(ν0) = v⋆(ν0)/ν0 = 1/(ν0lβ−1). This
is a measure zero event and does not affect the conclusion.
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C Proof of Theorem 2

(i) Suppose the spectral decomposition of S isQLQT , withQ orthogonal and L = diag(l1, . . . , lp),

as given in (3). Then the solution to (9) for the given u is represented as Σ̂(u) = QΛ̂−1QT ,

where Λ̂−1 = diag(λ̂−1
1 , . . . , λ̂−1

p ), with

λ̂−1
i =





1/(κmaxu), if li ≤ 1/(κmaxu)
li, if 1/(κmaxu) ≤ li < 1/u
1/u, if li ≥ 1/u.

for i = 1, . . . , p. The conditional risk of Σ̂(u), given the sample eigenvalues l = (l1, . . . , lp), is

E
(
Lent(Σ̂(u),Σ)

∣∣l
)

=

p∑

i=1

{
λ̂−1
i E

(
aii(Q)

∣∣l
)
− log λ̂−1

i

}
+ log detΣ− p,

where aii(Q) =
∑p

j=1 q
2
jiλ

−1
j and qji is the (j, i)-th element of the orthogonal matrix Q. This

is because

Lent

(
Σ̂(u),Σ

)
= Tr

(
Λ̂−1A(Q)

)
− log det

(
Λ̂−1

)
+ log detΣ− p

=

p∑

i=1

{
λ̂−1
i aii(Q)− log λ̂−1

i

}
+ log detΣ− p, (24)

where A(Q) = QTΣ−1Q.
In (24), the summand has the form

xE
(
aii(Q)

∣∣l
)
− log x

whose minimum is achieved at x = 1/E
(
aii(Q)

∣∣l
)
. Since

∑p
j=1 q

2
ji = 1, and Σ−1 ∈ D

(
κmax, u

)

if Σ ∈ D
(
κmax, u

)
, we have u ≤ aii(Q) ≤ κmaxu. Hence 1/E

(
aii(Q)

∣∣l
)
lies between 1/u and

1/κmaxu almost surely. Therefore,

1. If li ≤ 1/(κmaxu), then λ̂
−1
i = 1/(κmaxu) and

λ̂−1
i E

(
aii(Q)

∣∣l
)
− log λ̂−1

i ≤ li E
(
aii(Q)

∣∣l
)
− log li.

2. If 1/κmaxu ≤ li < 1/u, then λ̂−1
i = li and

λ̂−1
i E

(
aii(Q)

∣∣l
)
− log λ̂−1

i = li E
(
aii(Q)

∣∣l
)
− log li.

3. If li ≥ 1/u,then λ̂i = 1/u and

λ̂−1
i E

(
aii(Q)

∣∣l
)
− log λ̂−1

i ≤ li E
(
aii(Q)

∣∣l
)
− log li.
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Thus,
p∑

i=1

{
λ̂−1
i E

(
aii(Q)

∣∣l
)
− log λ̂−1

i

}
≤

p∑

i=1

{
li E

(
aii(Q)

∣∣l
)
− log li

}

and the risk with respect to the entropy loss is

Rent

(
Σ̂(u)

)
= E

[ p∑

i=1

{
λ̂−1
i E

(
aii(Q)

∣∣l
)
− log λ̂−1

i

}]

≤ E

[ p∑

i=1

{
li E

(
aii(Q)

∣∣l
)
− log li

}]

= Rent

(
S
)
.

In other words, Σ̂(u) has a smaller risk than S, provided λ−1 ∈ D(κmax, u).
(ii) Suppose the true covariance matrix Σ has the spectral decomposition Σ = RΛRT

with R orthogonal and Λ = diag
(
λ1, . . . , λp

)
. Let A = RΛ1/2, then S0 , ATSA has the same

distribution as the sample covariance matrix observed from a p-variate Gaussian distribution
with the identity covariance matrix. From the operational definition of the largest eigenvalue
l1 of S, we obtain

l1 = max
v 6=0

vTSv

vTv
= max

w 6=0

wTS0w

wTΛ−1w
,

where w = ATv. Furthermore, since for any w 6= 0,

λ−1
1 = min

w 6=0

wTΛ−1w

wTw
≤ wTΛ−1w

wTw
,

we have

l1 ≤ λ1max
w 6=0

wTS0w

wTw
= λ1e1, (25)

where e1 is the largest eigenvalue of S0. Using essentially the same argument, we can show
that

lp ≥ λpep, (26)

where ep is the smallest eigenvalue of S0. Then, from the results by Geman (1980) and
Silverstein (1985), we see that

P

({
e1 ≤

(
1 +
√
γ
)2
, ep ≥

(
1−√γ

)2}
eventually

)
= 1. (27)

The combination of (25)–(27) leads to

P

({
l1 ≤ λ1

(
1 +
√
γ
)2
, lp ≥ λp

(
1−√γ

)2}
eventually

)
= 1.
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On the other hand, if κmax ≥ κ
(
1−√γ

)−2
, then

{
l1 ≤ λ1

(
1 +
√
γ
)2
, lp ≥ λp

(
1−√γ

)2
}
⊂
{
max

( l1
λp
,
λ1
lp

)
≤ κmax

}
.

Also, if max
(
l1/λp, λ1/lp

)
≤ κmax, then

1/(κmaxλp) ≤ 1/l1 ≤ 1/(κmaxlp) ≤ 1/λ1.

Since, from Section A.2, u⋆ lies between (1/l1) and 1/(κmaxlp),

u⋆ ≤ λ−1
1 and λ−1

p ≤ κmaxu
⋆.

Therefore, {
max

( l1
λp
,
λ1
lp

)
≤ κmax

}
⊂
{
Σ ∈ D

(
κmax, u

⋆
)}
,

which concludes the proof.

D Proof of Theorem 3

Suppose the spectral decomposition of the k-th fold covariance matrix estimate Σ̂
[−k]
ν , with

κmax = ν, is

Σ̂[−k]
ν = Q[−k]diag

(
λ̂
[−k]
1 , . . . , λ̂[−k]

p

)(
Q[−k]

)T

with

λ̂
[−k]
i =





v[−k]∗ if l
[−k]
i < v[−k]∗

l
[−k]
i if v[−k]∗ ≤ l

[−k]
i < νv[−k]∗

νv[−k]∗ if l
[−k]
i ≥ νv[−k]∗,

where l
[−k]
i is the i-th largest eigenvalue of the k-th fold sample covariance matrix S[−k], and

v[−k]∗ is obtained according to the method described in Section 2. Since Σ̂
[−k]
ν = S[−k] if

ν ≥ l
[−k]
1 /l

[−k]
p = cond(S[−k]),

κ̂max ≤ max
k=1,...,K

l
[−k]
1

/
l[−k]
p . (28)

The right hand side of (28) converges in probability to the condition number κ of the true
covariance matrix, as n increases while p is fixed. Hence,

lim
n→∞

P
(
κ̂max ≤ κ

)
= 1.

We now prove that

lim
n→∞

P
(
κ̂max ≥ κ

)
= 1.

by showing that P̂R
(
ν
)
is an asymptotically decreasing function in ν.
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Recall that

P̂R
(
ν
)
= − 1

n

K∑

k=1

lk
(
Σ̂[−k]

ν , Xk

)
,

where

lk
(
Σ̂[−k]

ν , Xk

)
= −(nk/2)

[
Tr
{(

Σ̂[−k]
ν

)−1
XkX

T
k /nk

}
− log det

(
Σ̂[−k]

ν

)−1
]
,

which, by the definition of Σ̂
[−k]
ν , is everywhere differentiable but at a finite number of points.

To see the asymptotic monotonicity of P̂R(ν), consider the derivative−∂lk
(
Σ̂

[−k]
ν , Xk

)/
∂ν:

−∂lk
(
Σ̂

[−k]
ν , Xk

)

∂ν
=
nk

2

[
Tr

((
Σ̂[−k]

ν

)−1∂Σ̂
[−k]
ν

∂ν

)
+Tr

{
∂
(
Σ̂

[−k]
ν

)−1

∂ν

(
XkX

T
k

/
nk

)}]

=
nk

2

[
Tr

((
Σ̂[−k]

ν

)−1∂Σ̂
[−k]
ν

∂ν

)
+Tr

{
∂
(
Σ̂

[−k]
ν

)−1

∂ν
Σ̂[−k]

ν

}

+Tr

{
∂
(
Σ̂

[−k]
ν

)−1

∂ν

(
XkX

T
k

/
nk − Σ̂[−k]

ν

)}]

=
nk

2

[
∂

∂ν
Tr
((

Σ̂[−k]
ν

)−1
Σ̂[−k]

ν

)
+Tr

{
∂
(
Σ̂

[−k]
ν

)−1

∂ν

(
XkX

T
k

/
nk − Σ̂[−k]

ν

)}]

=
nk

2
Tr

{
∂Σ̃−1

ν

∂ν

(
XkX

T
k

/
nk − Σ̂[−k]

ν

)}
.

As n and nk increases, Σ̂
[−k]
ν converges almost surely to the inverse of the solution to the

following optimization problem

minimize Tr(ΩΣ)− log detΩ
subject to cond(Ω) ≤ ν,

with Σ and ν replacing S and κmax in (9). We denote the limit of Σ̂
[−k]
ν by Σ̃ν . For the

spectral decomposition of Σ

Σ = R diag
(
λ1, . . . , λp

)
RT , (29)

Σ̃ν is given as
Σ̃ν = R diag

(
ψ1(ν), . . . , ψp(ν)

)
RT , (30)

where, for some τ(ν) > 0,

ψi(ν) =





τ(ν) if λi ≤ τ(ν)
λi if τ(ν) < λi ≤ ντ(ν)
ντ(ν), if ντ(ν) < λi.
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Recall from Proposition 1 that τ(ν) is decreasing in ν and ντ(ν) is increasing.
Let ck be the limit of nk

/
(2n) when both n and nk increases. Then, XkX

T
k

/
nk converges

almost surely to Σ. Thus,

− 1

n

∂lk
(
Σ̂

[−k]
ν , Xk

)

∂ν
→ ck Tr

{
∂Σ̃−1

ν

∂ν

(
Σ− Σ̃ν

)}
, almost surely. (31)

We now study (31). First, if ν ≥ κ, then Σ̃ν = Σ, and the RHS of (31) degenerates to 0.
Now we consider the non-trivial case that ν < κ. From (30),

∂Σ̃−1
ν

∂ν
= R

∂Ψ−1

∂ν
RT = R diag

(
∂ψ−1

1

∂ν
, . . . ,

∂ψ−1
p

∂ν

)
RT ,

where

∂ψ−1
i

∂ν
=





− 1
τ(ν)2

∂τ(ν)
∂ν

(≥ 0) if λi ≤ τ(ν)

0 if τ(ν) < λi ≤ ντ(ν)

− 1
ν2τ(ν)2

∂(ντ(ν))
∂ν

(≤ 0) if ντ(ν) < λi.

From (29) and (30),
Σ− Σ̃ν = Rdiag

(
λ1 − ψ1, . . . , λp − ψp

)
RT ,

where

λi − ψi =





λi − u(ν) (≤ 0) if λi ≤ τ(ν)
0 if λi ≤ ντ(ν)
λi − νu(ν) (≥ 0) if ντ(ν) < λi.

Thus, the RHS of (31) is less than 0 and the almost sure limit of P̂R(ν) is decreasing in ν.

Finally, from the monotonicity P̂R(κ̂max) ≤ P̂R(κ), we conclude that

lim
n→∞

P
(
κ̂max ≥ κ

)
= 1.

E Proof of Proposition 2

We are given that

π(λ1, . . . , λp) = exp

(
−gmax

λ1
λp

)
λ1 ≥ · · · ≥ λp > 0.

Now ∫

C

π(λ1, . . . , λp)dλ
˜

=

∫

C

exp

(
−gmax

λ1
λp

)
dλ
˜

,

where C = {λ1 ≥ · · · ≥ λp > 0}.
Let us now make the following change of variables: xi = λi − λi+1 for i = 1, 2, .., p− 1,

and xp = λp. The inverse transformation yields λi =
∑p

j=i xj for i = 1, 2, .., p. It is
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straightforward to verify that the Jacobian of this transformation is given by |J | = 1.
Now we can therefore rewrite the integral above as

∫

C

exp

(
−gmax

λ1
λp

)
dλ
˜

=

∫

R
p
1

exp

(
−gmax

x1 + · · ·+ xp
xp

)
dx1 · · · dxp

= e−gmax

∫ [p−1∏

i=1

∫
exp

(
−gmax

xi
xp

)
dxi

]
dxp

= e−gmax

∫ ∞

0

(
xp
gmax

)p−1

dxp

=
e−gmax

gp−1
max

∫ ∞

0

xp−1
p dxp

= ∞.

To prove that the posterior yields a proper distribution we proceed as follows:

∫

C

π(λ
˜

)f(λ
˜

, l
˜

)dλ
˜

∝
∫

C

exp

(
−n
2

p∑

i=1

li
λi

)(
p∏

i=1

λi

)−n
2

exp

(
−gmax

λ1
λp

)
dλ
˜

≤
∫

C

exp

(
−n
2

p∑

i=1

lp
λi

)(
p∏

i=1

λi

)−n
2

exp

(
−gmax

λ1
λp

)
dλ
˜

as lp ≤ li ∀i = 1, . . . , p

≤
∫

C

exp

(
−n
2

p∑

i=1

lp
λi

)(
p∏

i=1

λi

)−n
2

e−gmaxdλ
˜

as
λ1
λp
≥ 1

≤ e−gmax

p∏

i=1

(∫ ∞

0

exp

(
−n
2

lp
λi

)
λ
−n

2
i dλi

)
.

The above integrand is the density of the inverse gamma distribution and therefore the
corresponding integral above has a finite normalizing constant and thus yielding a proper
posterior.

F Comparison of Bayesian prior densities

Comparison of various prior densities for eigenvalue shrinkage (p = 2). (a) Three-dimensional,
(b) contour view of the prior density (18). (c) Three-dimensional, (d) contour view of the
prior density induced by the inverse Wishart distribution. (a) Three-dimensional, (b) contour
view of the reference prior density due to Yang and Berger (1994).
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G Illustration of the effects of regularization in two-

sample testing

Schematic diagrams illustrating the effects of regularization on the two-sample test statistic
T (X) in three dimensions. Each of the two ellipsoids are visualized by three ellipses projected
onto the planes made of pairs of eigenvectors.

G.1 Means differ along the eigenvector (v1) associated with the
largest eigenvalue

v1

v2

v3
v1

v2

v3

(a) T (X) (b) Tcond(X)

v1

v2

v3
v1

v2

v3

(c) TLS(X), case 1 (d) TLS(X), case 2
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G.2 Means differ along the eigenvector (v3) associated with the
smallest eigenvalue

v1

v2

v3

v1

v2

v3
(a) T (X) (b) Tcond(X)

v1

v2

v3

v1

v2

v3
(c) TLS(X), case 1 (d) TLS(X), case 2

H Power simulation results

Power of different test statistics in which the sample estimate of the covariance matrix is
regularized. For each simulation scenario and level, the test statistic that achieves the highest
power is highlighted.
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ρ shift p
level=0.10 level=0.05

TLS(X) Tcond(X) T
−
(X) TLS(X) Tcond(X) T

−
(X)

0.3 first 5 0.3500 0.3575 0.3175 0.2275 0.2200 0.2050
10 0.5200 0.5125 0.3550 0.3875 0.3675 0.2375
20 0.7100 0.7000 0.4000 0.5850 0.5700 0.3175

last 5 0.1550 0.1475 0.1950 0.0775 0.0750 0.1000

10 0.2250 0.2225 0.1800 0.1300 0.1275 0.1000
20 0.2625 0.2475 0.1775 0.1725 0.1475 0.1000

upper 5 0.2500 0.2550 0.2175 0.1725 0.1700 0.1300
10 0.3625 0.3900 0.2200 0.2475 0.2725 0.1000
20 0.4575 0.5175 0.2375 0.3450 0.4025 0.1650

lower 5 0.1875 0.2100 0.2075 0.1200 0.1375 0.1050
10 0.2275 0.2600 0.1400 0.1600 0.1675 0.0700
20 0.2925 0.3000 0.1925 0.1800 0.1925 0.1200

all 5 0.2575 0.2550 0.2175 0.1650 0.1550 0.1025
10 0.2650 0.2950 0.1725 0.1700 0.1975 0.1100
20 0.4075 0.4275 0.2425 0.2750 0.3200 0.1450

0.5 first 5 0.5050 0.4900 0.5025 0.3525 0.3450 0.3500
10 0.7525 0.6675 0.5475 0.6100 0.5000 0.3975
20 0.9175 0.8625 0.5675 0.8500 0.7475 0.4925

last 5 0.1925 0.1600 0.1775 0.0925 0.0925 0.0850
10 0.1475 0.1500 0.1575 0.0825 0.0875 0.0775
20 0.1725 0.1300 0.2050 0.1075 0.0750 0.1075

upper 5 0.2800 0.2625 0.2700 0.1800 0.1750 0.1650
10 0.3275 0.3425 0.2050 0.2074 0.2050 0.1350
20 0.4375 0.5300 0.2675 0.3175 0.3925 0.2000

lower 5 0.1625 0.1600 0.1850 0.0650 0.0750 0.0750

10 0.1775 0.1825 0.1200 0.1100 0.1200 0.0550
20 0.2125 0.2075 0.1450 0.1125 0.1350 0.0850

all 5 0.1825 0.2025 0.1875 0.0925 0.1050 0.0850
10 0.2125 0.2500 0.1525 0.1325 0.1450 0.0950
20 0.3325 0.3575 0.2350 0.2000 0.2675 0.1475

I Empirical robust mean-variance rebalancing study

(Section 6.2)

I.1 List of Dow Jones stocks

Dow Jones stocks used in our numerical study and their market performance over the period
from February 18, 1994 to July 14, 2008. The return, risk and the Sharpe ratio (SR) are
annualized.
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index company ticker return [%] risk [%] SR
1 3M Company MMM 12.04 10.74 0.25
2 Alcoa, Inc. AA 16.50 15.47 0.30
3 American Express AXP 17.52 14.61 0.35
4 American International Group, Inc. AIG 7.96 12.93 0.07
5 AT&T Inc. T 11.57 12.95 0.19
6 Bank of America BAC 11.57 13.14 0.19
7 The Boeing Company BA 13.03 13.81 0.23
8 Caterpillar Inc. CAT 18.53 14.26 0.39
9 Chevron Corporation CVX 15.86 10.53 0.42

10 Citigroup Inc. C 14.44 15.27 0.25
11 The Coca-Cola Company KO 10.74 10.77 0.20
12 E.I. du Pont de Nemours & Company DD 9.58 12.43 0.13
13 Exxon Mobil Corporation XOM 16.58 10.46 0.45
14 General Electric Company GE 13.47 12.04 0.28
15 General Motors Corporation GM -1.24 15.85 -0.20
16 The Hewlett-Packard Company HPQ 20.22 18.24 0.35
17 The Home Depot HD 12.96 15.28 0.20
18 Intel Corporation INTC 20.84 19.13 0.35
19 International Business Machines Corp. IBM 20.99 13.86 0.48
20 Johnson & Johnson JNJ 17.13 10.10 0.49
21 JPMorgan Chase & Co. JPM 15.84 15.44 0.29
22 McDonald’s Corporation MCD 14.05 12.05 0.30
23 Merck & Co., Inc. MRK 12.86 12.87 0.24
24 Microsoft Corporation MSFT 22.91 15.13 0.50
25 Pfizer Inc. PFE 15.34 12.92 0.32
26 The Procter & Gamble Company PG 15.25 11.06 0.37
27 United Technologies Corporation UTX 18.93 12.37 0.47
28 Verizon Communications Inc. VZ 9.93 12.38 0.14
29 Wal-Mart Stores, Inc. WMT 14.86 13.16 0.30
30 The Walt Disney Company DIS 10.08 14.05 0.13
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I.2 Trading periods

index period index period
1 3/02/1992 – 8/26/1992 2 8/27/1992 – 2/24/1993
3 2/25/1993 – 8/23/1993 4 8/24/1993 – 2/17/1994
5 2/18/1994 – 8/18/1994 6 8/19/1994 – 2/15/1995
7 2/16/1995 – 8/15/1995 8 8/16/1995 – 2/12/1996
9 2/13/1996 – 8/09/1996 10 8/12/1996 – 2/06/1997
11 2/07/1997 – 8/06/1997 12 8/07/1997 – 2/04/1998
13 2/05/1998 – 8/04/1998 14 8/05/1998 – 2/02/1999
15 2/03/1999 – 8/02/1999 16 8/03/1999 – 1/28/2000
17 1/31/2000 – 7/27/2000 18 7/28/2000 – 1/25/2001
19 1/26/2001 – 7/25/2001 20 7/26/2001 – 1/29/2002
21 1/30/2002 – 7/29/2002 22 7/30/2002 – 1/27/2003
23 1/28/2003 – 7/25/2003 24 7/28/2003 – 1/23/2004
25 1/26/2004 – 7/23/2004 26 7/26/2004 – 1/20/2005
27 1/21/2005 – 7/20/2005 28 7/21/2005 – 1/18/2006
29 1/19/2006 – 7/18/2006 30 7/19/2006 – 1/17/2007
31 1/18/2007 – 7/17/2007 32 7/18/2007 – 1/14/2008
33 1/15/2008 – 7/14/2008

I.3 Performance metrics

We use the following quantities in assessing the performance of the rMVR strategies.

• Realized return. The realized return of a portfolio w over the period [Nestim + 1+ (j −
1)L,Nestim + jL] is computed as

r(j)(w) =
1

L

Nestim+jL∑

t=Nestim+1+(j−1)L

r(t)Tw(j).

• Realized risk. The realized risk (return standard deviation) of a portfolio w over the
period [Nestim + 1 + (j − 1)L,Nestim + jL] is computed as

σ(j)(w) =

√
w(j)TΣ

(j)
samplew

(j),

where Σ
(j)
sample is the sample covariance matrix of the asset returns over the period.

• Realized utility. The realized utility of a portfolio w over the period [Nestim + 1 + (j −
1)L,Nestim + jL] is given by

u(j)(w) = r(j)(w)− γ

2
(σ(j)(w))2,

where γ is the relative risk aversion parameter in (21).
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• Turnover. The turnover from the portfolio held at the start date of the jth period w(j)

to the portfolio w(j−1) held at the previous period is computed as

TO(j) =

p∑

i=1

∣∣∣∣∣∣
w

(j)
i −




Nestim+jL∏

t=Nestim+1+(j−1)L

r
(t)
i


w

(j−1)
i

∣∣∣∣∣∣
.

For the first period, we take w(0) = 0, i.e., the initial holdings of the assets are zero.

• Normalized wealth growth. Let w(j) = (w
(j)
1 , . . . , w

(j)
n ) be the portfolio constructed by

a rebalancing strategy held over the period [Nestim + 1 + (j − 1)L,Nestim + jL]. When
the initial budget is normalized to one, the normalized wealth grows according to the
recursion

W (t) =

{
W (t− 1)(1 +

∑p
i=1witr

(t)
i ), t 6∈ {Nestim + jL | j = 1, . . . , K},

W (t− 1)(1 +
∑p

i=1witr
(t)
i )− TC(j), t = Nestim + jL,

for t = Nestim, . . . , Nestim +KL, with the initial wealth W (Nestim) = 1. Here

wit =





w
(1)
i , t = Nestim + 1, . . . , Nestim + L,
...

w
(K)
i , t = Nestim + 1 + (K − 1)L, . . . , Nestim +KL.

and

TC(j) =

p∑

i=1

ηi

∣∣∣∣∣∣
w

(j)
i −




Nestim+jL∏

t=Nestim+1+(j−1)L

r
(t)
i


w

(j−1)
i

∣∣∣∣∣∣
is the transaction cost due to the rebalancing if the cost to buy or sell one share of
stock i is ηi.

I.4 Mean-variance portfolio theoretic performance metrics

Realized utility, realized return, and realized risk based on different regularization schemes for
the covariance matrices are reported. sample=sample covariance matrix, LW=linear shrink-
age using the Ledoit-Wolf optimality, condreg=condition number regularization. Each entry
is the mean (standard error) of the corresponding metric over the trading period (29 holding
periods) from March 1992 through July 2008. All values are annualized.
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covariance
regularization scheme

utility return [%] risk [%]

Nestim = 15
sample – – –
LW -0.143 (0.0390) 0.116 (0.0306) 0.138 (0.00732)

condreg -0.168 (0.0507) 0.135 (0.0323) 0.148(0.00889)
condreg - LW -0.0245 (0.0234) 0.0184 (0.0158) 0.00950 (0.00429)

Nestim = 30
sample -65.4 (29.3) -0.326 (0.446) 1.41 (0.340)
LW -0.143 (0.0464) 0.143 (0.0371) 0.145 (0.00819)

condreg -0.138 (0.0526) 0.144 (0.0334) 0.143 (0.00882)
condreg - LW 0.00490 (0.0204) 0.00127 (0.0179) -0.00204 (0.00446)

Nestim = 45
sample -0.566 (0.105) 0.168 (0.0589) 0.230 (0.0146)
LW -0.120 (0.0490) 0.149 (0.0366) 0.140 (0.00793)

condreg -0.130 (0.0561) 0.151 (0.0314) 0.141 (0.00947)
condreg - LW -0.0105 (0.0269) 0.00188 (0.0189) 0.000835 (0.00453)

Nestim = 60
sample -0.275 (0.0592) 0.142 (0.0459) 0.175 (0.0100)
LW -0.111 (0.0457) 0.147 (0.0357) 0.138 (0.00719)

condreg -0.120 (0.0527) 0.154 (0.0310) 0.140 (0.00908)
condreg - LW -0.120 (0.0527) 0.00696 (0.0158) 0.00161 (0.00386)

I.5 Turnover

Turnover for various estimation horizon sizes over the trading period from February 18, 1994
through July 14, 2008. sample=sample covariance matrix, LW=linear shrinkage using the
Ledoit-Wolf optimality, condreg=condition number regularization.
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