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Abstract

We study a regression model on the area under the receiver operating characteristic
curves (AUC) for clustered (or repeatedly measured) test results. To account for
cluster information, we consider a weighted estimating equation for Dodd and Pepe
(2003)’s regression model with working independence weights. We find the optimal
weight in the given class of working independence weights to minimize the variance
(or MSE) of regression estimators. We apply the proposed procedure to analyzing our
recent experiment on diagnosing a liver disorder. In the experiment, we investigated
MRI images of patients having symptoms of potential liver disorder to compare the
performance of different MRI picturing methods in testing for liver disorders.

Key words: Area under curve, clustered ordinal results, generalize estimating equa-
tion, optimal weight.

1 Introduction

The receiver operating characteristic (ROC) curve plots two accuracy measures of diagnostic

tests: the false positive rate (FPR) and the true positive rate (TPR). FPR is the probability

of falsely identifying a non-disease (negative) group, say ND, as a disease (positive) group,

say D. TPR is the probability of correctly classifying a subject from the disease group. For
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example, suppose Y is the continuous result of a diagnostic test, where, for a cutoff value

c, Y ≥ c implies classifying a subject to the disease (positive) group and Y < c implies

classifying him to the disease (negative) group. Then, the FPR is P
(
Y ≥ c

∣∣ND
)

and the

TPR is P
(
Y ≥ c

∣∣D)
. The ROC curve plots these FPRs and TPRs for various choices of c.

The performance of diagnostic test often depends on covariates such as gender and age

as in the hearing impairment example in Dodd and Pepe (2003). The covariate dependent

ROC models are studied extensively in the previous literature to take into account the co-

variate effect. A common approach is to introduce covariate dependent error distributions.

For example, Tosteson and Begg (1988) model the survival functions of ND and D as a func-

tion of covariates directly and calculate the induced covariate-specific ROC curve. Similar

approaches are taken by many other authors including Le (1997), Pepe (1998), Pepe (2000),

Alonzo and Pepe (2002), Cai and Pepe (2002), Faraggi (2003), and Schisterman et al. (2004).

Another approach is the regression model for the area under the ROC curve (AUC). The

AUC is a single index performance measure of medical diagnostics. When the diagnostic

result is continuous, it is equivalent to the probability that the result from the disease group

Y D is larger than that of the non-disease group Y ND. Using this result, Dodd and Pepe

(2003) propose a regression model for the AUC, and estimate it by solving the generalized

estimating equations (GEE) constructed by pairing test results of the non-disease group with

that of the disease group. To be specific, suppose
(
Y D

i , XD
i

)
and

(
Y ND

j , XND
j

)
are observations

from D and ND for i = 1, 2, . . . , nD, and j = 1, 2, . . . , nND, respectively. They propose a

regression model g
(
θij

)
= XT

ijβ, where Xij =
(
XD

i , XND
j

)T
, θij = P

(
Y D

i > Y ND
j

∣∣XD
i , XND

j

)
,

and g is the probit or the logit function. It is worth noting that Dodd and Pepe (2003) do

not assume repeated observations from a single subject or a patient.

In this paper, we are interested in the regression model for clustered (or repeatedly

measured) test results which often arises in many medical practices (Zeltzer et al., 1991;

Tang and Balakrishnan, 2011). The analysis of clustered results (or repeatedly measured
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data) are well understood under the conventional regression model. For example, Liang and

Zeger (1986) propose a generalized estimating equation (GEE) method to estimate regression

parameters and point out that disregarding the cluster information results in inefficiency

of the estimators and biased variance estimate. The AUC of clustered ordinal results is

previously studied by Obuchowski (1997). She estimates the AUC of each method using the

Mann-Whitney type statistics and compares two diagnostic methods. In doing so, she uses

working independence weights which are equal to all lesions (or observations).

We modify the regression model for the AUC by Dodd and Pepe (2003) to account for

the cluster information. Dodd and Pepe (2003) construct generalized estimating equations

(GEE) by pairing test results of the non-disease group with that of the disease group to

estimate the model. In this paper, we propose to use a weighted GEE to take the cluster

information into account. The optimal weight for the weighted GEE is known to be the

inverse covariance matrix of estimating equations in a cluster; however, it is unfeasible to

get the covariance matrix of estimating equations of randomly paired test results.

We consider a class of working independence weights in constructing GEE to incorporate

the cluster information. It is a convex set of two special weights, equal weights to obser-

vations (lesions in our example) wL and equal weights to clusters (subjects or patients in

our example) wS. These two weights are shown to be optimal in opposite situations in con-

ventional repeatedly measured data analysis (Ju, 2004). To be specific, when there exists a

strong dependency among observations within a cluster, the optimal independent weight is

known to be the equal weights to clusters. On the other hand, if observations within a cluster

are independent or nearly independent, the optimal independent weight assigns equal weight

to observations. We suggest to use the weight in the given class to minimize the variance

(or the mean squared error, MSE) of regression coefficient estimators. We call the weight

to achieve the minimum as ”optimal independent weight” and use a bootstrap procedure to

compute it.
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The paper is organized as follows. In Section 2, we introduce an estimating equation

approach for clustered ordinal test results. We further introduce the class of working inde-

pendence weights we consider and propose a bootstrap procedure to find the optimal inde-

pendent weights. In Section 3, we numerically investigate the aforementioned relationship

between the optimal independent weights and the dependency among observations within

a cluster. It shows that, when the observations within a cluster are strongly dependent (or

independent) to each other, the independent optimal weight is close to wS (or wL). In the

section, we also investigate the performance of the bootstrap procedure we use in this paper.

In Section 4, we apply the model to analyzing the liver disorder data set which motivates

the paper. We briefly summarize the paper in Section 5.

2 Model and estimation

In this section, we propose the regression model and its estimation for the clustered test

results. We assume that test results are ordinal which is more common than binary results

in many medical diagnostics. We also assume that all covariates are discrete and its extension

to continuous covariates can be done without much additional efforts as in Dodd and Pepe

(2003).

Suppose we observe {(Y D
ik , XD

ik} for i = 1, 2, . . . , nD, k = 1, 2, . . . , ni, from the disease

population, and {(Y ND
jl , XND

jl )} for j = 1, 2, . . . , nND and l = 1, 2, . . . , nj from the non-

disease population. Given covariates x with XD
ik = XND

jl = x, the covariate specific AUC

is

AUC(x) = P
(
Y D

ik > Y ND
jl

∣∣x)
+

(
1
/
2
)
P

(
Y D

ik = Y ND
jl

∣∣x)
. (1)

We propose the model that

g
{
AUC(x)

}
= β0 + βT

1 u(x), (2)

where g is a link function such as the logistic or the probit function, and u(x) is the covariate
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vector.

To estimate the model, we introduce new variables and a set of estimating equations. We

define new variables Uijkl for
{
(i, k), (j, l)

}
with i ∈ D, j ∈ ND, and XD

ik = XND
jl = x as:

Uikjl =





1 if Y D
ik > Y ND

jl

1
/
2 if Y D

ik = Y ND
jl

0 if Y D
ik < Y ND

jl

,

whose mean is θikjl(x) ≡ E
(
Uikjl

∣∣x)
= P

(
Y D

ik > Y ND
jl

∣∣x)
+

(
1
/
2
)
P

(
Y D

ik = Y ND
jl

∣∣x)
= AUC(x).

Thus, g
(
θikjl(x)

)
= β0 + βT

1 u(x).

We estimate β0 and β1 by solving the equations

nD∑
i

nND∑
j

wij

ni∑

k=1

nj∑

l=1





(
1
u(x)

)
h
(
β0 + βT

1 u(x)
)

(
∂θikjl

/
∂β

)
ν(θikjl)

−1I
(
XD

ik = XND
jl

)(
Uikjl − θikjl

)





= 0, (3)

where β =
(
β0, β

T
1

)T
, wij is non-negative weight, h =

(
g−1

)′
, ν(θikjl) = θikjl(1 − θikjl), and

I(A) is the indicator function of the event A.

When the link function is logit (or probit), we could solve the estimating equation simply

by using a logistic (or probit) regression model between Uijkl and Xi for pairs XD
i = XND

j .

Solving (3) is equivalent to solve generalized estimating equations with independent diagonal

weights to estimate the model. The most efficient weights weff =
{
wij, i = 1, 2, . . . , nD, j =

1, 2, . . . , nND

}
rely on the dependent structure of estimating equations eikjl = I

(
XD

ik =

XND
jl

)(
Uikjl−θikjl

)
, for i = 1, 2, . . . , nD, j = 1, 2, . . . , nND, and k = 1, 2, . . . , ni, l = 1, 2, . . . , nj.

The above estimating equations are constructed from the pairs of observations from the

disease and the non-disease groups which are dependent on each other in a complex manner.

Thus, weff is almost unfeasible.

We consider two extreme working independence weights. One is assigning an equal weight

to all lesions (observations) and the other is assigning an equal weight to all subjects (clus-

ters). Suppose we assign an equal weight to all lesions. Then, this is equivalent to assuming

wL
ij ∝ 1. (4)
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The weight wL
ij is the optimal diagonal weight providing the minimum (determinant of)

variance of the regression estimators, when lesions in a cluster are independent or nearly

independent. On the other hand, when we assign an equal weight to all subjects, it is

equivalent to assigning the weight proportional to 1
/
nD

i to each lesion of subject i ∈ D and

the weight proportional to 1
/
nND

j to lesions of subject j ∈ ND. Thus, the weight wij is

wS
ij ∝

{
1
/(

nD
i nND

j

)}
. (5)

It is optimal when lesions within a cluster are dependent. We let wL =
{
wL

ij, i = 1, 2, . . . , nD, j =

1, 2, . . . , nND

}
and wS =

{
wS

ij, i = 1, 2, . . . , nD, j = 1, 2, . . . , nND

}
.

In this paper, we consider the class of weights w =
{
wij, i = 1, 2, . . . , nD, j = 1, 2, . . . , nND

}
,

where
{
w

∣∣ wij = λwL
ij +

(
1− λ

)
wS

ij, λ ∈ [0, 1]
}

. (6)

and find λ∗ minimizing the variance (or the MSE) of regression estimators.

The variance (or the MSE) of the regression estimators are unknown. We note that we

obtain the regression estimates β̂, the solution to (3) using the logistic regression. However,

the standard errors reported by the logistic regression are no longer accurate due to the

dependency among observations Uijkls. Here, we propose to use a bootstrap procedure to

compute the variance (or the MSE) of the regression coefficients. The computed standard

errors further provide a method for selecting optimal λ. The procedures are summarized as

follows:

• Using resampling techniques, get a data set from the original data set which has the

same structure. In other words, the generated data set has the same number of diseased

and non-diseased patients for each AUC group as the original data set. Thus, we

resample patients separately for each AUC group.

• Let this resampled data set be
{
(Y D∗

ik , XD∗
ik ), (Y ND∗

jl , XND∗
jl )

}
. Using this resampled data

set, obtain the regression coefficient estimate β̂∗1 .
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• Repeat the above procedure B times so that we have B regression coefficient estimates

{β̂(k)
1 , k = 1, 2, . . . , B}.

• Compute the variances (or MSEs) of the bootstrapped regression estimates and find

λ∗ to minimize their sum.

• We here remark that the standard errors of the regression estimators corresponding to

λ∗ are straightforwardly from the bootstrapped estimates.

3 Numerical study

3.1 Independent Optimal Weights

In this section, we study the relationship between the independent optimal weight and the

dependency among observations within a cluster. To be specific, we numerically show that

(i) equal weight to all lesions is the optimal independent weight providing the minimum

variance (or MSE) of the regression estimators, when lesions in a cluster are independent

or nearly independent; (ii) equal weight to all subjects (clusters) is optimal independent

weight, when lesions within a cluster are strongly dependent to each other. In the study,

we generate data sets with the differential strength of within cluster dependence, and apply

different weights in (6) for λ = 0.0, 0.1, . . . , 0.9, 1.0 including wL
ij(λ = 0.0),

(
1/2

)(
wL

ij + wS
ij

)
,

and wS
ij(λ = 1.0).

We first explain the model used for the simulation study. The test results Y ND and Y D

have values of 1, . . . , K with probabilities p0 =
(
α(x), α(x), . . . , α(x), 1− (K − 1)α(x)

)
and

p1 =
(
1− (K− 1)α(x), α(x), . . . , α(x)

)
, respectively. We set 1

/
K < α(x) < 1

/
(K− 1). The

AUC for covariate x is

AUC(x) = α(x)
{(

K2 − 4K + 2
)
α(x) + 2

}/
2
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and it is modelled using the logit link as

AUC(x) = exp(β0 + β1x)
/{

1 + exp(β0 + β1x)
}
. (7)

To generate clustered ordinal results, we use a multivariate normal distribution with mean

0 and covariance Σ whose (i, j)−th element is σij = ρ|i−j|. To be more specific, suppose
(
vi1, vi2, . . . , vini

)
is a random vector from a multivariate normal distribution. Then, we

define the clustered ordinal results
(
yi1, yi2, . . . , yini

)
of the i−th subject as

yij =





1 if vij ∈
(−∞, ψ1

)
2 if vij ∈

[
ψ1, ψ2

)
...

...
K − 1 if vij ∈

[
ψk−1, ψK

)
K if vij ∈

[
ψK ,∞)

,

(8)

where ψk = Φ−1
(
kα(x)

)
, for k = 1, 2, . . . , K − 1, and Φ(x) is the cumulative distribution

function of the standard normal distribution. The dependence in ordinal results is induced

by that in the multivariate normal distribution.

The data set we consider is composed of two types of clusters, clusters with size c1

and c2. In both disease (D) and non-disease group (ND), the number of clusters with size

c1 is (approximately) equal to that with size c2. We set (c1, c2) as (2, 5) or (3, 4). We

further assume equal number of clusters for non-disease and disease group with size n, i.e.,

nD = nND = n. We consider a two sample problem where there exists a single covariate

x = 0 or x = 1, where x = 0 indicates the control diagnostic method and x = 1 indicates the

new method. We also assume β0 = 0,β1 = 0.5 or 0.8, and ρ = 0.1, 0.5 or 0.9. The sample

size n is chosen as 50, 100, 150 and 200.

We generate 1000 data sets and compute the estimates of β1. For each data set, we

apply the aforementioned three weights. We compute the bias and the variance for each

case (of strength of dependency and different choices of weights). We report the results

for wL
ij(λ = 0.0),

(
1/2

)(
wL

ij + wS
ij

)
, and wS

ij(λ = 1.0). In all cases, the square of the bias

significantly smaller than the variance; thus, the variance is approximately equal to the MSE.
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We report the weight (λopt) which provides the minimum MSE (approximately equals to the

minimum variance) among λ = 0.0, 0.1, . . . , 0.9, and 1.0. The results are reported in Tables

1-4.

Tables 1-4 also report the coverage probability of confidence interval of β. Suppose β̂k

is the regression estimate of the k−th data set. The interval estimator for the k−th data

set is defined by β̂k ± z(1−α)/2s.e.
(
β̂k

)
, where s.e.

(
β̂k

)
is estimated by the standard error

of β̂1, . . . , β̂1000. The empirical coverage probability is the proportion of data sets, whose

confidence interval contains the true value of regression coefficient. The empirical coverage

probabilities are close to their aimed levels in all cases we consider.

The results confirm that wL (or wS) is optimal when observations within clusters are

weakly (or strongly) dependent. This is more pronounced for the case (c1, c2) = (2, 5) than

the case (c1, c2) = (3, 4). Here, the results considering wL are consistent with those in

Obuchowski (1997).

3.2 Bootstrap for clustered data

Bootstrapping clustered data is an important problem and is much studied in previous liter-

ature. The literature includes randomized cluster bootstrap, two-stage bootstrap by Davison

and Hinkley (1997), reverse two-stage bootstrap by McCullagh (2000), and residual boot-

strap by Andersson and Karlsson (2001). There are also many other bootstrap procedures

not listed above and a good review is given in Davison and Hinkley (1997) and Field and

Welsh (2007).

The bootstrap procedure in Section 2 is a special case of randomized cluster bootstrap and

is denoted by cluster bootstrap. However, it should be remarked that the overall procedure

in the paper is flexible to the choice of bootstrap procedure. In other words, in the procedure,

we can replace the cluster bootstrap with the others such as the two-stage bootstrap, the

reverse two-stage bootstraps, or others.
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ρ n wL wλ=0.5 wS λopt wλopt

0.1 50 0.0103(0.2655) 0.0128(0.2710) 0.0157(0.2891) 1.0 0.0103(0.2655)
[ 0.896, 0.942] [0.895, 0.945] [0.901, 0.944] [0.896, 0.942]

100 0.0008(0.1894) -0.0007(0.1922) -0.0019(0.2046) 0.9 0.0005(0.1892)
[0.899, 0.950] [0.901, 0.941] [0.902, 0.945] [0.902, 0.950]

150 0.0036(0.1510) 0.0019(0.1543) 0.0004(0.1649) 1.0 0.0036(0.1510)
[0.908, 0.968] [0.907, 0.959] [0.906, 0.951] [0.908, 0.968]

200 0.0051(0.1358) 0.0033(0.1380) 0.0016(0.1465) 0.9 0.0047(0.1357)
[0.890, 0.955] [0.898, 0.955] [0.897, 0.953] [0.891, 0.956]

0.5 50 0.0119(0.3371) 0.0126(0.3328) 0.0139(0.3441) 0.6 0.0124(0.3324)
[0.901, 0.950] [0.904, 0.950] [0.905, 0.948] [0.906, 0.949]

100 0.0139(0.2480) 0.0114(0.2430) 0.0093(0.2493) 0.5 0.0114(0.2430)
[0.899, 0.960] [0.902, 0.954] [0.906, 0.954] [0.902, 0.954]

150 0.0079(0.1986) 0.0064(0.1955) 0.0051(0.2015) 0.6 0.0067(0.1954)
[0.886, 0.946] [0.886, 0.946] [0.898, 0.948] [0.885, 0.945]

200 0.0091(0.1750) 0.0071(0.1718) 0.0052(0.1764) 0.5 0.0071(0.1718)
[0.900, 0.949] [0.894, 0.948] [0.898, 0.948] [0.894, 0.948]

0.9 50 0.0022(0.4734) 0.0025(0.4479) 0.0039(0.4432) 0.1 0.0036(0.4424)
[0.906, 0.953] [0.911, 0.941] [0.901, 0.944] [0.903, 0.944]

100 0.0249(0.3368) 0.0212(0.3194) 0.0181(0.3156) 0.1 0.0187(0.3152)
[0.898, 0.953] [0.903, 0.949] [0.896, 0.946] [0.898, 0.946]

150 0.0155(0.2799) 0.0144(0.2656) 0.0136(0.2618) 0.1 0.0137(0.2617)
[0.902, 0.936] [0.897, 0.949] [0.896, 0.948] [0.893, 0.945]

200 0.0169(0.2330) 0.0153(0.2200) 0.0139(0.2166) 0.1 0.0142(0.2164)
[0.909, 0.945] [0.904, 0.949] [0.902, 0.950] [0.900, 0.952]

Table 1: β1 = 0.5 and clusters with size 2 and 5. The values in each cell are bias and
√

MSE.√
MSE are in the parentheses.
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ρ n wL wλ=0.5 wS λopt wλopt

0.1 50 0.0015(0.2667) 0.0006(0.2675) -0.0002(0.2697) 1.0 0.0015(0.2667)
[0.911, 0.950] [0.909, 0.945] [0.906, 0.943] [0.911, 0.950]

100 0.0076(0.1880) 0.0071(0.1883) 0.0067(0.1896) 0.9 0.0075(0.1880)
[0.905, 0.953] [0.906, 0.952] [0.911, 0.957] [0.906, 0.951]

150 0.0047(0.1529) 0.0044(0.1527) 0.0042(0.1537) 0.7 0.0045(0.1527)
[0.896, 0.947] [0.900, 0.947] [0.902, 0.946] [0.896, 0.947]

200 0.0066(0.1338) 0.0062(0.1338) 0.0058(0.1345) 0.8 0.0064(0.1337)
[0.892, 0.947] [0.896, 0.949] [0.896, 0.945] [0.895, 0.944]

0.5 50 0.0031(0.3409) 0.0027(0.3408) 0.0024(0.3425) 0.7 0.0029(0.3406)
[0.897, 0.946] [0.898, 0.945] [0.900, 0.949] [0.897, 0.944]

100 0.0025(0.2402) 0.0018(0.2396) 0.0012(0.2402) 0.5 0.0018(0.2396)
[0.898, 0.941] [0.903, 0.940] [0.903, 0.937] [0.903, 0.940]

150 0.0141(0.1942) 0.0138(0.1935) 0.0135(0.1940) 0.4 0.0137(0.1935)
[0.893, 0.944] [0.898, 0.948] [0.900, 0.947] [0.898, 0.947]

200 0.0083(0.1689) 0.0078(0.1684) 0.0073(0.1687) 0.4 0.0077(0.1684)
[0.887, 0.951] [0.892, 0.950] [0.890, 0.948] [0.893, 0.951]

0.9 50 0.0436(0.4358) 0.0423(0.4329) 0.0413(0.4326) 0.2 0.0417(0.4324)
[0.897, 0.947] [0.898, 0.948] [0.903, 0.951] [0.897, 0.950]

100 0.0174(0.3159) 0.0158(0.3138) 0.0143(0.3131) 0.0 0.0143(0.3131)
[0.899, 0.951] [0.898, 0.952] [0.899, 0.955] [0.899, 0.955]

150 0.0169(0.2577) 0.0162(0.2557) 0.0156(0.2550) 0.0 0.0156(0.2550)
[0.896, 0.944] [0.893, 0.944] [0.892, 0.946] [0.892, 0.946]

200 0.0157(0.2176) 0.0152(0.2157) 0.0148(0.2149) 0.0 0.0148(0.2149)
[0.898, 0.950] [0.898, 0.951] [0.901, 0.951] [0.901, 0.951]

Table 2: β1 = 0.5 and clusters with size 3 and 4. The values in each cell are bias and
√

MSE.√
MSE are in the parentheses.
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ρ n wL wλ=0.5 wS λopt wλopt

0.1 50 0.0013(0.2583) -0.0002(0.2625) -0.0011(0.2803) 0.9 0.0009(0.2580)
[0.915, 0.954] [0.921, 0.952] [0.905, 0.956] [0.916, 0.953]

100 0.0048(0.1894) 0.0025(0.1927) 0.0006(0.2058) 0.9 0.0043(0.1892)
[0.900, 0.958] [0.904, 0.955] [0.904, 0.955] [0.902, 0.955]

150 0.0011(0.1557) -0.0015(0.1585) -0.0038(0.1688) 0.9 0.0006(0.1556)
[0.903, 0.957] [0.901, 0.957] [0.897, 0.956] [0.902, 0.955]

200 0.0044(0.1374) 0.0026(0.1396) 0.0010(0.1483) 0.9 0.0040(0.1373)
[0.888, 0.955] [0.894, 0.950] [0.901, 0.943] [0.885, 0.955]

0.5 50 0.0143(0.3377) 0.0132(0.3339) 0.0135(0.3482) 0.6 0.0133(0.3332)
[0.904, 0.949] [0.892, 0.953] [0.894, 0.949] [0.892, 0.953]

100 0.0174(0.2459) 0.0151(0.2435) 0.0134(0.2523) 0.6 0.0155(0.2430)
[0.896, 0.954] [0.898, 0.952] [0.892, 0.950] [0.895, 0.951]

150 0.0083(0.2024) 0.0064(0.1989) 0.0048(0.2044) 0.6 0.0068(0.1989)
[0.896, 0.952] [0.893, 0.948] [0.894, 0.946] [0.893, 0.948]

200 0.0094(0.1757) 0.0073(0.1731) 0.0055(0.1783) 0.6 0.0077(0.1730)
[0.907, 0.949] [0.903, 0.949] [0.904, 0.951] [0.903, 0.947]

0.9 50 0.0416(0.4715) 0.0397(0.4443) 0.0395(0.4377) 0.1 0.0394(0.4373)
[0.905, 0.946] [0.904, 0.947] [0.908, 0.953] [0.905, 0.951]

100 0.0242(0.3291) 0.0220(0.3128) 0.0208(0.3110) 0.2 0.0212(0.3099)
[0.899, 0.955] [0.898, 0.951] [0.904, 0.945] [0.902, 0.947]

150 0.0136(0.2681) 0.0119(0.2537) 0.0108(0.2504) 0.1 0.0110(0.2501)
[0.893, 0.943] [0.891, 0.945] [0.890, 0.939] [0.890, 0.939]

200 0.0176(0.2347) 0.0157(0.2220) 0.0142(0.2187) 0.1 0.0145(0.2186)
[0.909, 0.951] [0.899, 0.956] [0.905, 0.949] [0.903, 0.953]

Table 3: β1 = 0.8 and clusters with size 2 and 5. The values in each cell are bias and
√

MSE.√
MSE are in the parentheses.
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ρ n wL wλ=0.5 wS λopt wλopt

0.1 50 0.0202(0.2622) 0.0194(0.2622) 0.0188(0.2637) 0.8 0.0199(0.2621)
[0.904, 0.951] [0.905, 0.948] [0.901, 0.947] [0.905, 0.950]

100 0.0074(0.1869) 0.0065(0.1872) 0.0057(0.1885) 0.9 0.0072(0.1869)
[0.891, 0.958] [0.893, 0.959] [0.898, 0.959] [0.890, 0.958]

150 0.0028(0.1512) 0.0025(0.1517) 0.0022(0.1530) 1.0 0.0028(0.1512)
[0.906, 0.960] [0.904, 0.957] [0.908, 0.952] [0.906, 0.960]

200 0.0058(0.1338) 0.0054(0.1338) 0.0050(0.1345) 0.8 0.0056(0.1337)
[0.893, 0.944] [0.892, 0.939] [0.895, 0.943] [0.896, 0.942]

0.5 50 0.0020(0.3350) 0.0030(0.3349) 0.0041(0.3366) 0.7 0.0026(0.3348)
[0.906, 0.946] [0.906, 0.944] [0.905, 0.946] [0.907, 0.944]

100 0.0118(0.2461) 0.0112(0.2452) 0.0106(0.2454) 0.3 0.0110(0.2451)
[0.895, 0.954] [0.899, 0.953] [0.894, 0.953] [0.894, 0.954]

150 0.0038(0.1927) 0.0036(0.1926) 0.0035(0.1935) 0.7 0.0037(0.1925)
[0.898, 0.949] [0.898, 0.948] [0.898, 0.948] [0.896, 0.947]

200 0.0085(0.1697) 0.0079(0.1692) 0.0073(0.1695) 0.5 0.0079(0.1692)
[0.895, 0.954] [0.900, 0.953] [0.904, 0.948] [0.900, 0.953]

0.9 50 0.0083(0.4303) 0.0069(0.4271) 0.0057(0.4261) 0.1 0.0059(0.4261)
[0.899, 0.952] [0.901, 0.954] [0.898, 0.952] [0.898, 0.952]

100 0.0388(0.3212) 0.0379(0.3186) 0.0371(0.3176) 0.0 0.0371(0.3176)
[0.892, 0.952] [0.896, 0.955] [0.899, 0.952] [0.899, 0.952]

150 0.0147(0.2562) 0.0145(0.2544) 0.0143(0.2538) 0.0 0.0143(0.2538)
[0.898, 0.951] [0.900, 0.950] [0.903, 0.945] [0.903, 0.945]

200 0.0162(0.2192) 0.0157(0.2173) 0.0152(0.2166) 0.0 0.0152(0.2166)
[0.899, 0.950] [0.896, 0.950] [0.893, 0.949] [0.893, 0.949]

Table 4: β1 = 0.8 and clusters with size 3 and 4. The values in each cell are bias and
√

MSE.√
MSE are in the parentheses.
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In this section, we numerically investigate the performance of the cluster bootstrap pro-

cedure. In the study, we set the number and the size of clusters as those of our real example

in Section 4. The example has 36 clusters (patients) and 106 bservations in total as

cluster size 1 2 3 4 5 7 8
number of observations 6 13 6 4 5 1 1

.

We generate samples from the same model used in Section 3.1. We generate 500 data

sets for each case of within-cluster correlation ρ = 0.1, 0.5, and 0.9. In each data set:

• we resample 400 bootstrapped data sets.

• we compute the regression estimates using different weights w = 0.0, 0.1, . . . , 0.9, 1.0.

• for each w, we construct 95% confidence interval of β using 400 bootstrap estimates.

• we then count the number of data sets among 500 data sets, whose confidence in-

terval contains the true regression parameter β, and compute the empirical coverage

probability.

The empirical coverage probabilities are plotted in Figure 1. It shows the cluster boot-

strap slightly underestimates the coverage probabilities, particularly when ρ is small. How-

ever, the difference between the empirical coverage probabilities and the aimed level of cov-

erage is small and also decreases as ρ increases. The better performance of cluster bootstrap

for large ρ would be in accord with the optimality of large λ in Equation (6).

4 Example

The liver is the most frequent site of metastases from various extrahepatic malignancies.

Determining the presence of hepatic metastases is important in order to provide the opti-

mal plan for patients who are candidates for surgery and in order to assess prognosis after
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Figure 1: Empirical coverage probabilities for the bootstrap procedure based on sub-sampling
clusters.)

initial treatment. Thirty-six (17 men, 46-76 years old; 19 women, 31-74 years old) patients

are enrolled as our study population. The extrahepatic malignancies among these patients

included 31 colorectal cancers, 3 stomach cancers, 1 duodenal cancer, and 1 renal cell carci-

noma. A total of 106 focal lesions (51 metastases and 55 benign lesions) are found among the

36 patients included in our study. The maximum number of focal hepatic lesions seen in a

patient is 8 and the minimum number is 1. Eighteen patients with 53 lesions undergo surgery

and are confirmed as having either metastases (n = 29) or benign lesions (n = 24). Among

the remaining 18 patients with 53 lesions, the histopathologic results are obtained by percu-

taneous liver biopsies of 14 lesions (13 metastases and 1 eosinophilic abscess). The remaining

39 lesions of these 18 patients are diagnosed as metastases (n = 14) or benign lesions (n =

25) by means of all available data as well as follow-up imaging (ultrasonography, CT, MRI,
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and other imaging if available) and levels of serum carcinoembryonic antigen. To compare

the gadobenate dimeglumine (Gd-BOPTA)-enhanced and the ferucarbotran-enhanced MR

imaging methods, an MRI is performed on the following settings:

(Set A) : Gd-BOPTA-enhanced dynamic imaging.
(Set B) : Combination of Gd-BOPTA-enhanced dynamic and

delayed imaging.
(Set C) : Ferucarbotran-enhanced delayed imaging.
(Set D) : Combination of ferucarbotran-enhanced dynamic and

delayed imaging
(Set E) : Combination of Gd-BOPTA-enhanced dynamic imaging

and ferucarbotran-enhanced delayed imaging.

We are interested in comparing (G1)(Set A) and (Set B), (G2) (Set C) and (Set D) and

(G3) (Set C) and (Set E) to investigate the effect of additional delayed or dynamic imaging.

All MR images are evaluated on a PACS (picture archiving and communicating system)

(Radpia, Hyundai Information Technology) with the annotations masked. Three radiologists

(7, 7, and 6 years’ experience of abdominal MRI, respectively) perform the image analysis;

they are unaware of any other information regarding the patients’ clinical history, laboratory

results, and the findings of other imaging modalities except that the patients had focal hep-

atic lesions suspected of being metastases. The MR images are independently reviewed and

were interpreted by each observer in five reading sessions separated by at least 4-week inter-

vals in order to avoid learning effects. The readers determine the possibility of malignancy

of the detected lesions using a 5-point confidence rating scale (definitely not=0, probably

not=1, possibly=2, probably=3, definitely=4).

We first disregard the cluster information by subjects and plot the empirical ROC curves

in Figure 2. The figure shows that the additional delayed or dynamic imaging improves the

accuracy in diagnosing abnormality. To be specific, we find that:

• The ROC curve of (Set B) has higher value than that of (Set A);equivalently, (Set B)

has higher TPR than (Set A) at all FPR.
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Figure 2: The empirical ROC curves of (Set A)-(Set E)

• The ROC curve of (Set D) has higher value than that of (Set C);equivalently, (Set D)

has higher TPR than (Set C) at all FPR.

• The ROC curve of (Set E) has higher value than that of (Set C);equivalently, (Set E)

has higher TPR than (Set C) at all FPR.

Now, we test whether these improvements are statistically significant. To do it, we apply
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the proposed AUC regression model with two discrete covariates, picturing methods and

readers. We consider the class of working independence weights in (6). We consider λ to

minimize the sum of variances of all estimates without the intercept or the estimates of (Set

B)-(Set E. The grid search shows that, in both cases, the λ to minimize the sum of variances

is 0.9 (see Figure 3.). Here, the variances at a given λ are estimated using 1000 bootstrap

samples.
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Figure 3: λ versus the sum of variances of estimates.

We now estimate the model with working independence weight wij = 0.9wL
ij +0.1wS

ij and

the results are reported in Table 5. For Gd-BOPTA-enhanced MRI, there is no significant

difference in AUC with adjustment for clustering effect between the dynamic set and the

combination set (set A versus set B) in detecting hepatic metastases (p-value = 0.1778). For

ferucarbotran-enhanced MRI, however, there is a significant difference between the delay set

and the combination set (set C versus set D) (p-value = 0.0462). In comparison of AUCs
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between double- and single-contrast sets, set E does not have significant improvement from

set C for detecting hepatic metastases (p-value = 0.1252).

In summary, there is no significant difference in detecting hepatic metastases between the

two contrast-enhanced MR imaging method, but the combination of Gd-BOPTA-enhanced

dynamic and delayed imaging methods has an additive value in detecting hepatic metastases.

r Est. SE p-value Est. SE p-value

Intercept 1.8999 0.2881 <0.0001 1.8844 0.2927 <0.0001
Reader2 0.2111 0.2181 0.3331 0.2111 0.2181 0.3331
Reader3 -0.0267 0.1815 0.8830 -0.0267 0.1815 0.8830

Set A −− −− −− 0.0155 0.2892 0.9573
Set B 0.1865 0.1384 0.1778 0.2019 0.3120 0.5176
Set C -0.0155 0.2892 0.9572 −− −− −−
Set D 0.4437 0.3430 0.1958 0.4592 0.2303 0.0462
Set E 0.4471 0.2262 0.4081 0.4625 0.3016 0.1252

Table 5: Results of the analysis of liver abnormality tests. The left set of estimates assumes
the estimate of Set A is 0. The right set assumes the estimate of Set C is 0.

5 Conclusion

In this paper, extending the results of Dodd and Pepe (2003), a weighted regression model is

proposed, along with a procedure to estimate it when the test has clustered ordinal results.

Here, the weights reflect the cluster information. We consider a class of working independence

weights which are convex combinations of two extreme working independence weights. One

is assigning an equal weight to all lesions (observations) and the other is assigning an equal

weight to all subjects (clusters). We propose to use a cluster bootstrap procedure to estimate

the mean squared error of regression estimators. We then propose to use the weight in the
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class to minimize the variance (or the mean squared error) of regression estimates. We

numerically show that (i) equal weight to all lesions is the optimal independent weight

providing the minimum variance (or MSE) of the regression estimators, when lesions in a

cluster are independent or nearly independent; (ii) equal weight to all subjects (clusters) is

optimal, when lesions in a cluster are strongly dependent to each other. We also numerically

investigate the performance of the cluster bootstrap for the data sets having same sizes

with the motivating example. We apply the proposed procedure to testing several picturing

methods to detect liver abnormality and find that the combination of Gd-BOPTA-enhanced

dynamic and delayed imaging methods has an additive value in detecting hepatic metastases.
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