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1 IntroductionRanked set sampling (RSS) is an established cost e�cient sampling method. It has beenshown to be useful in situations where the characteristic of interest is expensive to mea-sure, but sampling units can be easily gathered and ranked by some means not requiringquanti�cation. Such situations arise naturally and frequently in �elds of agriculture andenvironment sciences (Ross and Stokes, 1999). For an overview about RSS, see Chen et al.(2006) and the references therein.Recently, judgment post-strati�cation (JP-S) has been proposed by MacEachern et al.(2004) as an alternative to ranked set sampling. RSS and JP-S are similar, both in prac-tical implementation and in theoretical development. Thus, they can be applied in similarsituations. Both sampling methods improve estimates of the population mean by arti�ciallycreating a strati�ed sample based on the (judgment) ranks of fully measured units. However,RSS relies on a special design, in which ranking is required to be done before measuring, andthe number of units in each rank class is prespeci�ed. In contrast, JP-S is based on a simplerandom sample (SRS), in which the experiment units are further post-strati�ed on ranks,and so the number of units in each rank class is a random variable. Since an underlying SRSis tractable in most statistical analyses, JP-S is attractive, for example, when data need tobe collected for multiple purposes. Also, in some applications, researchers may be reluctantto beginning with a nonstandard design, but willing to beginning with an SRS with theoption of using auxiliary rank information later. In addition, JP-S is �exible. It can allowrankers to express uncertainty about ranks (MacEachern et al., 2004). It can also formallyincorporate ranking information from multiple auxiliary variables or rankers (Wang et al.,2006).In this paper, we consider the problem of mean estimation based on JP-S samples. Wepropose new estimators that are motivated by the observation that the distributions fromdi�erent judgment rank classes are stochastically ordered, even if ranking is imperfect. Theorder constraints in distributions yield a simple ordering in means, too. However, standardmean estimates of the judgment post-strata may not re�ect the restrictions because of theinherent variability of the observations. Violations may often occur when the total sample2



size is small, as is the typical case in applications where accurate measurements are di�cultor costly.The literature indicates that by imposing the underlying order constraints, substantialreduction in mean square errors can be obtained (Feltz and Dykstra, 1985; Lee, 1981).Here, for JP-S data, we consider a method that explicitly takes into account the orderingvia isotonic regression while estimating the means of the post-strata, and then uses theisotonized estimates to form a new estimator of the population mean.The rest of the paper is organized as follows. In Section 2, we propose the new estimatorof mean and show it is strongly consistent. Section 3 compares it with the existing one inboth the asymptotic properties and small-sample behaviors. In Section 4, we further extendour method to JP-S data that allow for multiple rankers or imprecise ranking. In Section5, three data examples are provided; the �rst example uses body mass data to examine theperformance under the impact of imperfect ranking; the second illustrates the use of ourestimator with two rankers through adjusted brain weight data; and the third illustrates theuse with imprecise ranking on shelved Master's theses data.2 Estimation of Mean Using Isotonic RegressionSuppose the variable of interest Y is absolutely continuous with population mean µ and �nitevariance σ2. A basic version of a judgment post-strati�cation sample is constructed as follows.First, select a simple random sample of n units, on each of which the value of Y is measured.For each i (1 ≤ i ≤ n), an additional H − 1 units are randomly selected and the judgmentorder of Yi among its H comparison units, denoted by Oi, is determined subjectively withoutmeasuring the H−1 units (hence ranking errors could occur). Thus, the JP-S sample consistsof the data of the form (Yi, Oi)
n
i=1, and the n measured units fall into H post-strata formedby the orders. Let Y[h] denote Y |O = h, any observation falling in the h-th post-stratum,

h = 1, · · ·H . Let nh, Ȳ[h], µ[h], and σ2
[h] denote the number, sample mean, mean and varianceof Y[h]'s within the h-th stratum. Note that (n1, · · · , nH) ∼ multinomial(n, 1/H, · · · , 1/H).
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MacEachern et al. (2004) propose an unbiased JP-S estimator of µ,
µ̂ =

1

H

H
∑

h=1

Ȳ[h], (1)which is the average of all sample means of the H post-strata. The asymptotic relativee�ciency of µ̂ versus the estimator from balanced ranked set sampling is 1.Assume that Y[1], · · ·Y[H] are stochastically ordered. That is, for any y,
F[1](y) ≥ · · · ≥ F[H](y), (2)where F[h](y) denotes the cumulative density function within the h-th stratum. This as-sumption is true when ranking is perfect, since in this case F[h](y) becomes F(h)(y), thedistribution of the h−th order statistics. In the presence of ranking errors, it is true inmany situations, for example, when linear ranking models (Dell and Clutter, 1972), or moregenerally, monotone likelihood ratio ranking models (Fligner and MacEachern, 2006) aresuitable. It is also true for the expected spacings model for the probabilities of imperfectranking (Bohn and Wolfe, 1994). Furthermore, Fligner and MacEachern (2006) argue thatan appropriate imperfect-ranking model based on perceived values of units should satisfy(2).We now consider the built-in ordering in the means of the strata. Note that for 1 ≤ i ≤ H ,
µ[i] =

∫ +∞

−∞

ydF[i](y)

=

∫ 1

0

F−1
[i] (z)dz. (3)In the second equality above, we change the variable z = F[i](y) such that y = F−1

[i] (z), where
F−1

[i] (z) ≡ inf{y : F[i](y) = z}. Based on (2), it is easy to verify that for any 1 ≤ i < j ≤ H ,
0 ≤ z ≤ 1,

F−1
[i] (z) ≤ F−1

[j] (z)which, combined with (3), yields the following result.4



Proposition 1. Assume that Y[1], · · ·Y[H] be stochastically ordered. Then
µ[1] ≤ · · · ≤ µ[H]. (4)However, the sample means Ȳ[h] may violate the simple order constraint (4), due tosampling variations. It might be helpful to replace each Ȳ[h] in (1) by its isotonized version

Ȳ ∗
[h] to obtain the new estimator µ̂∗,

µ̂∗ =
1

H

H
∑

h=1

Ȳ ∗
[h], (5)where

Ȳ ∗
[h] = max

r≤h
min
s≥h

s
∑

g=r

ngȲ[g]

nrs
, nrs =

s
∑

g=r

ng.Indeed, {Ȳ ∗
[h]} is the well-known isotonic regression estimator of {Ȳ[h]} with weights (nh)

H
h=1,which minimizes the weighted least square ∑H

h=1(Ȳ[h] − µ[h])
2nh over the restricted space

{µ ∈ RH , µ[1] ≤ · · · ≤ µ[H]}. According to Chapter 1, Robertson et al. (1988), the followingresults hold for {Ȳ ∗
[h]}:1. ∑H

h=1(Ȳ[h] − µ[h])
2nh ≥ ∑H

h=1(Ȳ[h] − Ȳ ∗
[h])

2nh +
∑H

h=1(Ȳ
∗
[h] − µ[h])

2nh;2. ∑H
h=1(Ȳ[h] − Ȳ ∗

[h])Ȳ
∗
[h]nh = 0; ∑H

h=1(Ȳ[h] − Ȳ ∗
[h])µ[h]nh ≤ 0;3. ∑H

h=1 Ȳ[h]nh =
∑H

h=1 Ȳ ∗
[h]nh.Note that if nh = n/H , then µ̂∗ = µ̂, which follows directly from the third result above.This indicates that for a balanced ranked set sample, adjusting for the underlying orderinghas no e�ect at all. However, in JP-S samples, due to random allocation, it is rare to havean equal sample size of each stratum, especially when n is small.Using Theorem 2.2 of Barlow et al. (1972), we have that Ȳ ∗

[h] is a strongly consistentestimator of µ[h], since Ȳ[h] is strongly consistent of µ[h]. Noting that
|µ̂∗ − µ| =

∣

∣

∣

∣

∣

1

H

H
∑

h=1

(

Ȳ ∗
[h] − µ[h]

)

∣

∣

∣

∣

∣

≤ 1

H

H
∑

h=1

∣

∣Ȳ ∗
[h] − µ[h]

∣
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yields the following result.Theorem 1. µ̂∗ is a strongly consistent estimator of µ.Finally, we mention that µ̂∗ can be easily computed via a linear-time algorithm, calledpool adjacent violators (PAV) (Ayer et al., 1955). Codes written in FORTRAN are availableonline in CMU StatLib.3 ComparisonWe �rst compare the large-sample properties of the JP-S estimators with and without usingisotonic regression. To do this, the stratum means µ[1],...,µ[H] are assumed to be strictlyincreasing. This is reasonable as long as there are no adjacent rank classes in which theranker totally mixes up and performs in a purely random pattern. Obviously, it is true forperfect ranking.Theorem 2. Assume µ[1] < · · · < µ[H]. Then the JP-S estimator µ̂∗ with isotonic regressionsatis�es
√

n(µ̂∗ − µ) → N(0,

∑H
h=1 σ2

[h]

H
).The technical proof of the theorem is given in the appendix. It is easy to verify that theJP-S estimator µ̂ without isotonic regression has the same asymptotic distribution. Then itfollows immediately that the asymptotic relative e�ciency of µ̂∗ versus µ̂ is 1. So for largesample sizes, it is expected that µ̂∗ and µ̂ perform comparably.Next, we compare the small-sample behaviors of µ̂∗ and µ̂ through simulation. Table 1reports the relative e�ciency of the two JP-S estimators (assuming perfect ranking) to theSRS estimator Ȳ for six di�erent distributions, the standard normal, uniform(0, 1), U-shaped,gamma with shape parameter 5 and scale parameter 1, standard exponential and standardlognormal distributions. We set the number of ranked sets H = 2, 3, 4, 5, 10, and the samplesize n = H × n̄ where the average sample size in each set is chosen as n̄ = 2, 3, 4, 5, 20. Notethat n̄ = 20 is included so as to verify the asymptotic property given in Theorem 2. Here,e�ciency (eff) is de�ned as the ratio of the variance of Ȳ to MSE of each JP-S estimator,6



where MSE is simulated from 5000 replicates except for the lognormal case where 5000 isreplaced by 20,000.Table 1: Comparing e�ciency of the JP-S Estimators with and without isotonic regressionN(0,1) Uni(0,1) Ushape Gam Exp(1) LN(0,1)H n̄ µ̂
∗

µ̂ µ̂
∗

µ̂ µ̂
∗

µ̂ µ̂
∗

µ̂ µ̂
∗

µ̂ µ̂
∗

µ̂2 2 1.08 1.06 1.10 1.07 1.08 1.04 1.07 1.05 0.99 0.97 0.97 0.973 1.16 1.14 1.18 1.14 1.18 1.13 1.13 1.10 1.10 1.08 0.98 0.974 1.21 1.19 1.25 1.22 1.22 1.18 1.19 1.17 1.10 1.09 1.07 1.075 1.27 1.26 1.32 1.31 1.28 1.25 1.27 1.26 1.15 1.14 1.03 1.0320 1.42 1.42 1.47 1.47 1.44 1.44 1.37 1.37 1.35 1.35 1.15 1.153 2 1.29 1.17 1.31 1.20 1.27 1.20 1.40 1.25 1.30 1.10 1.19 1.033 1.41 1.30 1.50 1.39 1.40 1.29 1.43 1.33 1.29 1.20 1.11 1.044 1.55 1.49 1.60 1.51 1.54 1.43 1.49 1.42 1.30 1.24 1.13 1.095 1.56 1.53 1.66 1.61 1.58 1.50 1.54 1.50 1.41 1.37 1.12 1.1020 1.75 1.75 1.99 1.99 1.80 1.80 1.77 1.77 1.59 1.59 1.31 1.314 2 1.59 1.32 1.62 1.36 1.51 1.32 1.59 1.28 1.54 1.21 1.28 1.013 1.74 1.55 1.85 1.65 1.73 1.50 1.72 1.51 1.58 1.38 1.19 1.084 1.83 1.69 2.00 1.83 1.82 1.63 1.91 1.74 1.50 1.40 1.23 1.175 1.94 1.85 2.16 2.04 1.85 1.71 1.76 1.70 1.56 1.49 1.20 1.1820 2.32 2.32 2.37 2.36 2.16 2.16 2.15 2.15 1.87 1.86 1.42 1.425 2 1.78 1.43 1.92 1.48 1.79 1.43 1.84 1.39 1.63 1.21 1.29 1.003 2.02 1.72 2.22 1.83 2.11 1.74 2.06 1.71 1.66 1.40 1.32 1.184 2.19 1.99 2.33 2.06 2.17 1.88 2.10 1.92 1.75 1.63 1.24 1.185 2.31 2.18 2.53 2.34 2.27 2.08 2.11 2.01 1.86 1.76 1.24 1.2120 2.69 2.69 2.91 2.90 2.50 2.50 2.50 2.50 2.11 2.11 1.52 1.5210 2 2.99 1.81 3.67 1.96 3.05 1.76 3.08 1.69 2.64 1.62 1.76 1.253 3.50 2.47 4.25 2.62 3.57 2.34 3.35 2.30 2.66 2.02 1.69 1.434 3.66 2.93 4.40 3.18 3.53 2.73 3.47 2.77 2.72 2.33 1.55 1.435 3.96 3.43 4.86 4.03 3.80 3.12 3.57 3.14 2.68 2.45 1.65 1.5820 4.66 4.65 5.36 5.35 4.19 4.17 4.12 4.12 3.29 3.29 1.95 1.94
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Figure 1: Improvement in percent from using isotonic regression for various distributionsunder perfect ranking. Each panel contains �ve lines, for di�erent values of H , indicated bythe number connecting each line. And n̄ is the average sample size in each ranked set.
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Table 1 shows that µ̂∗ is more e�cient than µ̂ and Ȳ in nearly all the settings. When
n̄ = 20, the two JP-S estimators have virtually the same performance, which con�rms that8



their asymptotic relative e�ciency is one. Figure 1 further shows size of the improvementfrom using isotonic regression, de�ned as [eff(µ̂∗) − eff(µ̂)]/eff(µ̂) × 100%. Clearly, theimprovement increases as H increases. This is reasonable, since the more sets we have, themore violations of the underlying order restrictions may occur in the sample means so thatthe isotonic regression takes greater e�ect. Another observation is that under the uniformdistribution the size of improvement appears the biggest and under the lognormal distributionit appears the smallest. But for all the distributions, the improvement is considerable when
H is not small (say H > 3), and n is small (say n̄ < 5).We should mention that the better performance of µ̂∗ is achieved without any distribu-tional assumptions. The improvement at small sample sizes is important in applications thatrequire cost e�ciency, where JP-S sampling is found most useful.4 Extension to Multiple Rankers and Imprecise RankingJudgment post-strati�cation is known as a data collection method closely related to rankedset sampling, both of which are based on similar ideas and applied in similar situations.Certainly, JP-S has its own merits. As mentioned in the introduction, JP-S can incorporatemultiple rankers and imprecise ranking to further improve mean estimation. Multiple rankersare useful in applications in which they can be recruited with some minimal cost. Theycan also be substituted by ranking through auxiliary variables that are easily attainable.Imprecise ranking allows a ranker to assign probabilities to ranks, and thus is useful insituations when ties occur or he/she has di�culty in producing a complete ordering for unitsin a set. We shall show below that the idea of isotonic regression can be applied in thepresence of multiple rankers or imprecise ranking without any additional di�culty.In the case where assessments of ranks are available from m rankers, the data generatedby a JP-S sample can be expressed by D = (Yi, Oi1, ..., Oim)n

i=1, where Oij is the judgmentorder of Yi assigned by ranker j among its own set of unmeasured units, for j = 1, ...m.To combine information from the multiple rankers, MacEachern et al. (2004) proposed a
9



nonparametric estimator of µ,
µ̂(m) =

1

H

H
∑

h=1

µ̂
(m)
[h] =

1

H

H
∑

h=1

∑n
i=1 Yipih

∑n
i=1 pih

, (6)where pih =
∑m

j=1 I(Oij = h)/m is the proportion of rankers who classify Yi as having rank
h. The corresponding estimator with isotonic regression can be constructed as

µ̂∗(m) =
1

H

H
∑

h=1

µ̂
∗(m)
[h] , (7)where {µ̂∗(m)

[h] } is the isotonized version of {µ̂(m)
[h] } with weights (ñh)

H
h=1,

µ̂
∗(m)
[h] = max

r≤h
min
s≥h

s
∑

g=r

ñgµ̂
(m)
[g]

ñrs
, ñg = m

n
∑

i=1

pih; ñrs =

s
∑

g=r

ñg.Computing µ̂∗(m) when m ≥ 2 is actually as simple as µ̂∗ for m = 1. Note that theoriginal estimator µ̂(m) is equivalent to the following estimation process: �rst transpose thedata D to D̃ = [(Y1, O11), ..., (Y1, O1m), (Y2, O21), ..., (Y2, O2m), ..., (Yn, On1), ..., (Yn, Onm)]T ,where each Yi value is replicated m times; then use µ̂ in (1) with D̃ to estimate µ as if therewere only one ranker but m × n observations. This fact allows us to compute µ̂∗(m) exactlythe same as in the case of one ranker, but with the transposed data D̃.In the case where imprecise ranking is allowed, each ranker assigns a distribution onthe ranks so that the JP-S data can be expressed by D = (Yi,pi1, ...,pim)n
i=1, where pij =

(pij1, ..., pijH) satis�es pij1 + · · · + pijH = 1 and pijh is the probability assigned by ranker jthat the ith fully measured unit has rank h. In formulas (6) and (7), by rede�ning
pih =

1

m

m
∑

j=1

pijh,both µ̂(m) and µ̂∗(m) can be applied to estimate µ.As will be shown in next section, µ̂∗(m) can improve µ̂(m) in both situations.
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5 Empirical StudiesWe have demonstrated in Section 2 that under perfect ranking from one ranker, our proposedestimator outperformed the one without using isotonic regression. The purpose of this sectionis to compare their performance under various practical situations and to investigate theimpact of imperfect ranking, multiple rankers and imprecise ranking on three examples,respectively.5.1 Imperfect Ranking: Body FatWe �rst consider the data set containing the percentage of body fat determined by underwaterweighing and various body circumference measurements for 252 men, which, along with adetailed description, is available at http://lib.stat.cmu.edu/datasets/bodyfat. We setour goal as estimation of the mean percentage of body fat for the 252 mean from simulatedJP-S samples. To test the impact of ranking errors, ranking was not done directly on thepercentage of body fat, but on other correlated measurements that are easier to obtain.We chose abdomen circumference, chest circumference, weight, and neck circumference asranking variables, each having correlation with the percentage of body fat 0.81, 0.70, 0.61and 0.49, respectively.In this simulation, we �x H at 5, and let the sample size n vary from 10 to 50 with stepsize 5. To generate a JP-S sample of size n, we randomly selected a group of �ve subjectsfrom the entire data set n times. Among each of the n groups, ranking was done based onone of the four ranking variables, and then one out of the �ve subjects was randomly selectedto enter the JP-S sample.Figure 2 shows values of the simulated relative e�ciency of the two JP-S estimators(with and without isotonic regression) to Ȳ for each sample size and each ranking variable.In each setting, MSE is estimated from 20,000 replicates. The �gure shows that when thecorrelation is not weak, both JP-S estimators can do better than the SRS estimator. Thestronger the correlation is, the more improvement the JP-S estimators can achieve over theSRS estimator. Also, µ̂∗ is uniformly better than µ̂. The performance di�erence between µ̂and µ̂∗ is bigger for small n and becomes smaller as n gets large, which is consistent with11



Figure 2: An empirical study of percentage of body fat. In each panel, the line connectedby �1� is for µ̂ and the line connected by �2� is for µ̂∗; a horizontal line at e�ciency equal to
1 is drawn as a reference line.
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what we observe from Table 1.5.2 Multiple Rankers: Adjusted Brain Weights of MammalsWe provide an illustration of our proposed method in the setting of multiple rankers. Here,we use the data set given in Section 4.2 of Stokes et al. (2006). It consists of 20 groupsand each has 3 species of mammals with their adjusted brain weights Y calculated fromthe formula Y = log{brain weight/(body weight)2/3}. Within each group, ranks of Y areavailable from two di�erent rankers. The rankers did not know the value of Y for eachmammal before they assigned ranks. So they made judgments based on the conjecture thata �clever� species tends to have a large adjusted brain weight.We assume that each of the 20 sets represents three independent draws from a large12



population of species, and set our goal as estimation of the mean of Y . To compare theestimators with two rankers, µ̂(2) and µ̂∗(2), we conducted a simulation, in which H = 3 and
n varies from 3 to 18 with step size 3. In each iteration, a sample of n species was selected,with one species from each set. Table 2 summarizes the results based on 20,000 iterationsfor each sample size n, which clearly shows that in presence of two rankers, using isotonicregression can improve mean estimation, especially for small sample sizes.Table 2: Comparing e�ciency of the JP-S estimators with and without isotonic regressionthrough an empirical study of adjusted brain weights of mammals, in which two rankers areavailable. n 3 6 9 12 15 18

µ̂
(2) 1.07 1.19 1.25 1.38 1.47 1.52

µ̂
∗(2) 1.28 1.36 1.37 1.46 1.52 1.56

5.3 Imprecise Ranking: Length of Master's ThesesTo study the e�ect of imprecise ranking, we consider the data set in Stokes and Sager (1988),which contains the volumes of 300 master's theses from a library at the University of Texasof Austin. The data were collected by two rankers, each of which each time visually judgedthe largest and smallest volumes of three contiguous, randomly selected shelved master'stheses in the library. Both rankers were forced to give exact ranks, and so made rankingerrors due to the fact that the books were sometimes visually indistinguishable. Thus, itmight be better to allow for imprecise ranking.For illustrative purposes, we set our goal as estimation of the mean volume of the 300theses. Note that the volume distribution in this data set is right skewed. To simulate aJP-S sample of size n with imprecise ranking, a �perceived� ranker repeats the followingprocedure n times. First, she randomly selects a group of H books from the entire data set.Within the group, one book is then randomly selected to enter the JP-S sample, and allother H − 1 books are compared with it based on visual judgment. The ranker is assumedto claim that a tie occurs when the di�erence of two books in volume is not larger than 10pages. She counts among the H − 1 books, how many longer than the selected book (say
l), how many shorter (say s), how many ties (say t), where l + s + t = H − 1. Based on13



Figure 3: An empirical study of the volumes of shelved master's theses. In each panel, theline connected by �1� is for µ̂ and the line connected by �2� is for µ̂∗.
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(l, s, t), the ranker distribution (pi1, · · · , piH) for the selected book (say the i observation)is determined as (0, · · · , 0, 1
t+1

, · · · , 1
t+1

, 0, · · ·0), where there are t + 1 nonzero probabilities,and l and s zero probabilities before and after the nonzero ones, respectively.In our simulation, H = 10 and n varies from 10 to 50 with step size 10. Again, MSEfor each estimator is estimated from 20,000 replicates. We also consider the two estimators
µ̂ and µ̂∗ under perfect ranking. Figure 3 plots the simulated e�ciency of the two JP-Sestimators to Ȳ under each setting.As we might expect, the �gure shows that allowing the ranker to assign imprecise ranksimproves mean estimation. Again, µ̂∗ is uniformly better than µ̂ under both perfect rankingand imprecise ranking. The size of improvement from using isotonic regression seems biggerunder perfect ranking than that under imprecise ranking.6 DiscussionFor JP-S samples, we have shown that by imposing the ordering of the stratum meansvia isotonic regression, the proposed method can achieve signi�cant improvement over theexisting one in mean estimation. In parallel, such ordering arises naturally in RSS. Thus,our method could be used for data collected from an unbalanced RSS for potentially bettermean estimates while for a balanced RSS, it yields exactly the same estimate.14



In addition, our method can be extended to estimation of the distribution function for apopulation of interest. Research in this direction is given by Ozturk (2006) in the context ofRSS.Appendix: Proof of Theorem 2In spirit of the work by Barmi and Mukerjee (2005), we derive the asymptotic distributionof µ̂∗.For h = 1, 2, ..., H ,
√

n(Ȳ ∗
[h] − µ[h]) =

√
n max

r≤h
min
h≤s

s
∑

j=r

nj

nrs

(

Ȳ[j] − µ[h]

)

= max
r≤h

min
h≤s

s
∑

j=r

nj

nrs

[√
n(Ȳ[j] − µ[j]) +

√
n(µ[j] − µ[h])

]

. (A.1)As n → +∞, it is well known that
√

nj(Ȳ[j] − µ[j]) →d N(0, σ2
[j]), (A.2)and nj/n → 1/H with probability 1 for j = 1, 2..., H . Then based on the continuous mappingtheorem, we have

√
n(Ȳ[j] − µ[j]) →d N(0, Hσ2

[j]),which indicates that {√n(Ȳ[j] − µ[j])}H
j=1 are bounded in probability. Further, noting thatin (A.1), √n(µ[j] − µ[h]) = +∞(−∞) as n → +∞ for j > h(< h), we �nd that the r and

s in the max and min will be restricted to r = s = h with arbitrarily high probability forsu�ciently large n, yielding
√

n(Ȳ ∗
[h] − µ[h]) →p

√
n(Ȳ[j] − µ[j]). (A.3)From (A.2) and the independence of Ȳ[j]'s,

(√
n(Ȳ[1] − µ[1]), · · · ,

√
n(Ȳ[H] − µ[H])

)T ⇒w (Z1, · · · , ZH)T ,15



which is a H−variate Gaussian process with independent components Zi =d N(0, Hσ2
[j]).Combined with (A.3), it follows that

√
n(µ̂∗ − µ) =

H
∑

h=1

√
n(Ȳ ∗

[h] − µ[h])/H

→d N(0,

∑H
h=1 σ2

[h]

H
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