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Summary. The paper here presented was motivated by a case study involving high-dimensional and high-
frequency tidal volume traces measured during induced panic attacks. The focus was to develop a procedure
to determine the significance of whether a mean curve dominates another one. The key idea of the suggested
method relies on preserving the order in mean while reducing the dimension of the data. The observed
data matrix is projected onto a set of lower rank matrices with a positive constraint. A multivariate testing
procedure is then applied in the lower dimension. We use simulated data to illustrate the statistical properties
of the proposed testing procedure. Results on the case study confirm the preliminary hypothesis of the
investigators and provide critical support to their overall goal of creating an experimental model of the
clinical panic attack in normal subjects.
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1. Introduction
High-dimensional functional data have become prominent in
a number of medical and biological fields. There the units of
observation are curves and the observed data consist of sets
of curves, often sampled on a fine grid. More and more atten-
tion among researchers is now devoted to the development of
appropriate statistical methodologies suitable for the analy-
sis of such data. The work we present here was motivated by
an ongoing collaboration with investigators at the New York
State Psychiatric Institute, at Columbia University. The over-
all goal is to create a model of the clinical panic attack in
normal human subjects, as it occurs in individuals affected
by panic disorder (Preter and Klein, 2007). Here we look at
data arising from a randomized study where measurements
of tidal volume, that is, the volume of gas exchanged during
each ventilated breath, are taken on a number of individuals
subject to interventions that may induce panic attacks. Prior
to the study investigators had an ordered mean hypothesis of

the type f 1(t) ≥ f 2(t) for all t (and f 1(t) > f 2(t) for at least
one t), with fi the mean curve for group i, i = 1, 2, and with
groups 1 and 2 defined by two different interventions. Our task
was to design a test to statistically validate this hypothesis.

The key idea of the novel procedure we suggest relies on
preserving the order in mean while reducing the dimension of
the data. We do this by projecting the observed data matrix
onto a space of low-rank matrices, which are represented as
a product of a coefficient matrix and a positively constrained
basis matrix that preserves the order between curves, that
is, if one curve is larger than the other one, then the coeffi-
cient vectors will preserve the same ordering. We then apply
a multivariate testing procedure to the coefficient vectors in
the lower dimension. Here we employ the modified Hotelling’s
T-statistics proposed by Follmann (1996), which has typi-
cally good power. Other testing procedures could be read-
ily applied, such as the approximate likelihood ratio test of
Tang, Gnecco, and Geller (1989). Notice that these procedures

C© 2008, The International Biometric Society 931



932 Biometrics, September 2008

require a consistent covariance matrix estimate and cannot
therefore be directly applied to a high-dimensional n × p data
matrix where p is possibly larger than n.

The order-preserving matrix factorization we adopt, de-
noted by nonnegative basis matrix factorization (NBMF),
minimizes the L2 norm between the observed data matrix and
a prespecified lower rank matrix, which imposes positive con-
straints on the basis vectors. In this regard, our procedure is
comparable to other dimension reduction procedures, such as
principal component analysis (PCA) and the nonnegative ma-
trix factorization of Lee and Seung (1999). Unlike our proce-
dure, however, PCA does not impose any constraint, whereas
the nonnegative matrix factorization assumes positiveness of
both coefficients and basis vectors. In our approach, by avoid-
ing the additional constraint, curves data are not limited to
be positive. Our NBMF problem, however, is not convex and
no algorithm can guarantee convergence to a global minimum.
We propose an iterative procedure that converges to a local
minimum.

There are several alternative approaches that one could use
to solve the testing problem at hand. A naive one is to com-
pute the average value of each curve and then apply a one-
side t-test. This global test completely ignores the pointwise
nature of the data. Another approach is a pointwise t-test.
With respect to the simple global t-test, pointwise t-tests give
the additional information on where the significance occurs,
see Ramsay and Silverman (1997). This procedure, however,
is sub-optimal and leads to large type I errors due to mul-
tiple testing. One can expect that an overall test that com-
bines all the pointwise comparisons, such as a nonparametric
procedure, would perform better. Fan (1996) and other re-
searchers, see Serban and Wasserman (2005) and references
therein, suggested nonparametric methods for curve testing
problems based on representations of the curves that use basis
functions, such as wavelets or Fourier bases. These methods,
however, do not consider any order constraints and are there-
fore not applicable to our problem. Positive basis functions,
such as cubic B-splines, would preserve the order constraint
but are sub-optimal for dimension reduction, often resulting
in many nonzero coefficients. Indeed, with B-splines the num-
ber of nonzero coefficients is proportional to the number of
basis functions used and additional variable selection proce-
dures are needed to achieve dimension reduction, see Zhang
et al. (2004). An additional advantage of the method we pro-
pose is that it determines the most appropriate basis functions
for any given dimension, by minimizing an L2 approximation
error.

The remainder of the article is organized as follows. In
Section 2 we describe the case study that motivated our work.
In Section 3 we introduce the NBMF method and the testing
procedure to test the order between two mean curves. We also
provide an algorithm for its implementation. In Section 4 we
illustrate performances on simulated data and in Section 5
we present results from the case study example. Section 6
concludes the article.

2. Sodium-Lactate-Induced Panic Attacks
The testing procedure we have developed in this article was
motivated by an ongoing collaboration with investigators

at the New York State Psychiatric Institute, at Columbia
University. The overall goal is to create a model of the clinical
panic attack in normal human subjects, as it occurs in indi-
viduals affected by panic disorder. Here we analyze data from
an experiment that looks at high-dimensional, high-frequency
measurements of tidal volume on a number of individuals sub-
ject to interventions that may induce panic attacks. Prior to
the study investigators had an ordered mean hypothesis of
the type f 1 ≥ f 2 with groups 1 and 2 defined by two different
interventions.

2.1 Experimental Study
Sodium lactate reliably produces panic attacks in patients
with panic disorder (Liebowitz et al., 1985). Normals rarely
have such reactivity. A distinctive feature of sodium-lactate-
induced panic is a marked increase in tidal volume (Goetz
et al., 1993). Klein (1993) suggested that the spontaneous
panic attack may be due to a hypersensitive alarm system
for the detection of signals of impending suffocation, such as
rising levels of CO2 or brain lactate. The endogenous opioid
system is an important central regulator of respiratory drive.
An exogenous opioid, such as morphine, blunts sensitivity to
CO2 (Fleetham et al., 1980). Conversely, naloxone, an opioid
receptor antagonist, increases the ventilatory response to hy-
percapnic hypoxia in normal human controls (Akiyama et al.,
1993). Naloxone pretreatment may make normal individuals
(who putatively have an intact opioid system) vulnerable to
the marked angiogenic and respiratory effects of sodium lac-
tate. In a pilot study Sinha, Goetz, and Klein (2007) found
that lactate after naloxone, administered to normals, pro-
duced a marked increase in tidal volume that exceeded previ-
ous results from infusing only lactate. Surprisingly, lactate,
despite producing a metabolic alkalosis, is a tidal volume
stimulant, as has been shown in both normal humans and
rats.

A randomized study with normal subjects was designed
to test the investigators’ hypothesis. Healthy normal male
and female adult volunteers, not affected by any psychiatric
or significant medical illness, were subject to different inter-
ventions. Here we focus on the two groups that received ei-
ther naloxone followed by sodium lactate or saline followed
by sodium lactate. The measuring and data recording device
was the lifeShirt (Wilhelm, Roth, and Sackner, 2003), a gar-
ment recently developed with embedded inductive plethys-
mography sensors for continuous ambulatory monitoring of
respiration and other physiological functions. Subjects had
sensors and intravenous lines placed while supine. The ex-
periment on each subject consisted of four phases. During
phase 1, baseline measurements were recorded for 30 minutes.
In phase 2, one group of subjects received naloxone, for 3–5
minutes, whereas the other group received saline. In phase 3,
all subjects received sodium lactate for approximately 20 min-
utes. Phase 4 was the recovery stage. In total, 65 subjects
completed all phases of the experiment, 37 in the “N + L”
(naloxone–lactate) group and 28 in the “S + L” (saline–
lactate) group. The hypothesis was that subjects receiving
the naloxone–lactate sequence will have greater increases in
tidal volume during the lactate phase than subjects in the
other group.
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3. Methods
This article focuses on the problem of testing the order be-
tween two mean curves, f1 and f2, based on sampled curves.
To be specific, let

Y(1) =
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
Y

(1)
1

Y
(1)

2
...
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represent the n1 curves for group 1 measured at p points,
and Y(2) the similarly defined n2 × p matrix of curves for
group 2. We assume that curves Y

(i)
j , for j = 1, 2, . . . ,ni, are

independent of each other. Let now f i = (f i1, f i2, . . . , f ip), for
i = 1, 2, indicate the p-dimensional population mean curves
for groups 1 and 2, respectively. We want to test f 1 ≥ f 2, that
is, f 1k ≥ f 2k for every k = 1, . . . , p (and f 1k > f 2k for at least
one k).

3.1 Order-Preserving Dimension Reduction
With p possibly larger than n, the key idea behind our pro-
posal is to represent Y(1) and Y(2) via lower dimensional vec-
tors of coefficients that preserve the order between the two
mean curves, so that the hypothesis f 1 ≥ f 2 can be tested
in a lower dimension. Specifically, let W(1) (and W(2)) be
the lower dimensional approximation of Y(1) (and Y(2)) and
µ1 (and µ2) be its population mean vector. Thus, we test
the order between f1 and f2 by testing the order between µ1

and µ2.
Let ‖A‖F be the standard L2 matrix norm, also known as

Frobenius norm, of A, that is, ‖A‖F = (
∑

ij
A2

ij)
1/2. We seek

to do dimension reduction by finding a small number of local
features of the curves, each defined as a positive linear combi-
nation of the p time points. More precisely, we find a low-rank
approximation to the data matrix Y that consists of a n × r
coefficient matrix W and an r × p nonnegative basis matrix
H, by solving the following nonlinear optimization problem

minimize‖Y − WH‖2
F, subject to H ≥ 0, ‖Hk‖2

F = 1 (1)

for k = 1, 2, . . . , r, where Hk is the kth row vector of H and
where the dimension r of W is a parameter to be set by the
user.

3.2 Testing the Order Between Two Mean Curves
Let us now consider the testing problem. We first apply a
common basis matrix H to both data matrices, Y(1) and Y(2),
and find lower-dimensional approximations. To be specific, we
set

Y =

(
Y(1)

Y(2)

)
(2)

and find r-rank approximations with positive basis vectors of
the type

Y =

(
Y(1)

Y(2)

)
≈
(

W(1)

W(2)

)
H. (3)

We can now apply a multivariate statistical testing pro-
cedure to the lower-dimensional approximations of the data.

Testing the order between the mean curves f1 and f2 is equiv-
alent to testing the order between the mean vectors of their
lower-dimensional approximations, µ1 and µ2. From (3) it is
clear that the following relations between f1 and f2, and µ1

and µ2 hold: f 1 ≈ µ1H and f 2 ≈ µ2H, with µ1 and µ2, being
the true coefficients of the finite basis approximation. This
implies

f1 ≥ f2 ⇔ µ1H − µ2H ≥ 0 ⇔ (µ1 − µ2)H ≥ 0

⇔ (µ1 − µ2)HHT ≥ 0 ⇔ µ1 − µ2 ≥ 0

and we are left to test H0 :µ1 = µ2 against H1 :µ1 ≥ µ2

componentwise (and µ1 > µ2 at least at one point), based on
the lower-dimensional approximations W(1) and W(2).

Here we use the Follmann’s multivariate procedure to test
the order between µ1 and µ2. Other procedures, such as the
approximate likelihood ratio test by Tang et al. (1989), may
be used here to test the same hypothesis. In order to test a
one-sided alternative hypothesis, Follmann (1996) suggested
the use of the following modified Hotellings’ T-statistics:

T = (W̄(1) − W̄(2))
(
n−1

1 S1 + n−1
2 S2

)−1
(W̄(1) − W̄(2))T

× I

(
r∑

k=1

(
W̄

(1)
k − W̄

(2)
k

)
> 0

)
, (4)

where Si = 1
ni−1

∑ni

j=1(W
(i)
j − W̄(i))(W(i)

j − W̄(i))T and

W̄(i) = 1
ni

∑ni

j=1 W(i)
j , for i = 1, 2, with W̄

(i)
k being the kth

component of W̄(i) and I(·) the indicator function. Follmann’s
test has a good power for the alternative hypothesis of a posi-
tive mean vector of differences. The test rejects if a quadratic
form of the sample mean vector exceeds its 2α critical value
and the sum of the elements of the mean vector exceeds zero.
This test is shown to have type I error rate equal to α for
both cases of known and unknown covariance matrix. It can
also be shown that (4) converges in distribution to a half χ2

distributed random variable with r degrees of freedom.

3.3 Probabilistic View
A probabilistic interpretation of our NBMF method can help
in setting practical guidelines for the choice of r, the dimension
of H. We start by explaining the model we assume for the
observation matrix Y. Suppose that each row vector Y j of Y
has a mean vector f, which belongs to the space spanned by
the column vectors of the r∗ × p matrix H∗. Suppose that the
Y j ’s have covariance matrix Ω for j = 1, 2, . . . ,n and that
they can be represented as

Y =


µ

...
µ


H∗ + E, (5)

with µ a 1 × r∗ vector and where each column vector of E
has mean vector 0 and covariance matrix Ω.

Suppose we mistakenly choose a dimension r, which is
higher than the true dimension r∗. Let H be the basis ma-
trix constructed by adding to H∗ the extra basis vectors
Hr∗+1, . . . ,Hr, and let H⊥ be the matrix of basis vectors
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Hr+1, . . . ,Hp, orthogonal to those of H. We re-write (5) as
Y = ηH + E1H + E2H⊥, where

η =



µ 0

µ 0
...

...

µ 0


 .

The optimization problem (1) becomes

‖Y − WH‖2
F =

∥∥(η + E1 − W)H + E2H⊥
∥∥2

F

= ‖(η + E1 − W)H‖2
F +
∥∥E2H⊥

∥∥2

F

because of the orthogonality between H and H⊥.
Thus, the solution to the problem, given H, is W = η +

E1 and we have

min
W

‖Y − WH‖2
F =

∥∥E2H⊥
∥∥2

F

≈ n
∥∥H⊥TΩH⊥

∥∥ = n

p∑
k=r+1

∥∥HT
k ΩHk

∥∥, (6)

where ‖A‖ =
∑

ij
|Aij |. This follows from the fact that the

variance of a column vector of E2H⊥ is H⊥TΩH⊥, because
of the orthogonality between H and H⊥ and the relation-
ship E = E1H + E2H⊥, and from the orthogonality among
Hr+1, . . . ,Hp. Note that the Frobenius norm of ‖E2H⊥‖2

F is
defined as the sum of squares of each component in the matrix.
Hence, it is reasonable to expect it to be close to n‖H⊥TΩH⊥‖.

A difficulty arises from the fact that Ω is unknown. Here
we assume Ω to be isotropic, that is, invariant to any rota-
tion of the orthonormal axes. This assumption is reasonable
for our case study, where individual curves are observed at
a set of equally spaced points and where the error process
is assumed to be stationary and identically distributed across
samples. With this assumption, the following statistics, which
we denote by mean square error (MSE),

min
W

‖Y−WH‖2
F

/
{(p− r)n} =

∥∥E2H⊥
∥∥2

F

/
{(p− r)n}

≈
p∑

k=r+1

∥∥HT
k ΩHk

∥∥/(p− r) (7)

is expected to be constant for every r ≥ r∗. In the special
case Ω = σ2I, we can expect the MSE to be approximately
equal to σ2 for r ≥ r∗. Thus, if the MSE does not markedly
decrease after a certain r, we can choose r as the dimension
of the reduced space. Later in the examples we will demon-
strate that this approach provides a good reference to select
an appropriate r.

3.4 Iterative Algorithm
Finally, we describe our optimization algorithm to solve
equation (1). The function to be minimized in (1) is convex
either in W or H, but not in both. Using this fact we propose
the following iterative procedure to solve the least square (LS)
problem and find a local minimum:

(i) Given the current estimate of W, solve the constrained
LS problem: {minimize ‖Y −WH‖2

F, subject to H ≥ 0,
‖Hk‖2

F = 1, k = 1, 2, . . . , r}.

(ii) Given the current estimate of H, update W to W =
YHT (H HT )−1, as the solution to the unconstrained LS
problem: {minimize ‖Y −WH‖2

F}.
Step (i) requires us to solve a quadratic program (QP)

with linear inequality constraints and quadratic equality con-
straints. We address this step with a two-stage procedure:
First, we solve the QP with linear inequalities,

minimize‖Y − WH‖2
F, subject to H ≥ 0, (8)

and then we normalize the resulting estimates H as Hk =
Hk/‖ Hk‖2

F, for k = 1, 2, . . . , r. Simple algebra can show the
equivalence between the two optimization procedures, that is
step (i) and the two-stage procedure we use.

The Karush–Kuhn–Tucker (KKT) conditions of a QP with
linear equality constraints is a set of linear equations that can
be solved analytically, see Boyd and Vandenberghe (2004).
Two most common ways to solve a QP, or its KKT condi-
tions, are the interior point method and the simplex method.
The interior point method solves the QP with linear inequal-
ity constraints by reducing it to a sequence of linear equal-
ity constrained problems. The simplex method solves the
KKT conditions by reformulating the problem into a lin-
ear programming problem. In this article we use the MOSEK

optimization toolbox, available for free on the internet at
www.mosek.com.

The proposed iterative LS procedure converges to a local
minimum because each step finds a new estimate that im-
proves the Frobenius norm. Let (W(m), H(m)) indicate the
current state at iteration m and let (W(m+1), H(m+1)) be the
subsequent estimates from steps (i) and (ii). Then,

‖Y − W(m)H(m)‖2
F ≥ min

H
‖Y − W(m)H‖2

F

= ‖Y − W(m)H(m+1)‖2
F

≥ min
W

‖Y − WH(m+1)‖2
F = ‖Y − W(m+1)H(m+1)‖2

F.

The final estimates of H and W are obtained as the solutions
of steps (i) and (ii) at the last iteration. In the data examples
we will indicate these estimates as Ĥ and Ŵ, respectively.

4. Numerical Examples
We used simulated data to investigate the statistical proper-
ties of our order-preserving dimension reduction testing pro-
cedure.

4.1 Selection of r
We start with a simple example that illustrates how the MSE
in (7) decreases for r ≤ r∗ and is constant for every r ≥ r∗.
Here, r∗ is the true dimension of the lower-dimensional repre-
sentation of the data, whereas r is the dimension prespecified
by the user. This simple example supports our choice of the
MSE as a good reference for selecting an appropriate r.

The numerical study was set up as follows: We fixed the
true column rank r∗ of H to 5, the dimension p of each curve
to 10 (and 100), and the number n of subjects to 20. We ran-
domly generated a coefficient matrix W of dimensions 20 ×
5 from uniform distributions in the interval [−10, 10] and a
basis matrix H of dimensions 5 × 10 (and 5 × 100) from uni-
form distributions in [0, 10]. We also randomly generated an
error matrix E using independent normal distributions with
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Figure 1. Boxplots of MSEs for different values of r, based on 100 generated data sets. The left panel shows the boxplots
for p = 10 and the right panel those for p = 100.

mean 0 and variance 1 and constructed an observation ma-
trix as Y = WH + E. With this setting we generated 100
observational matrices. We solved the NBMF problem with
each of the generated observational matrices and denoted the
solution for the lth matrix as Ŵ(l)

r and Ĥ(l)
r , for r = 1, . . . , 9

and l = 1, . . . , 100. Figure 1 shows boxplots of the MSEs com-
puted for each r = 1, 2, . . . , 9. As expected, the MSE values
decrease as r increases toward r∗ whereas they stay constant
for r ≥ r∗.

4.2 Power and Size of the NBMF Method
Next we report results on the power and test size of our NBMF
method. We chose true mean functions that would resemble
the case study data, that is,

f1(tk) = 224 + 0.26tk + u1(tk),

f2(tk) = 200 + 0.3tk − 0.0001t2k + u2(tk), (9)

where u1(t) = 20
√

t/210 sin(50π/(t/210 + 0.05)), u2(t)=10 sin
(πt/24) for k = 1, 2, . . . , p. A Doppler function and a sine
function were added to f1 and f2, respectively. We then set
r = 2 and found the lower-dimensional approximations by
NBMF, that is, the 1 × r vectors µ1, µ2, and the lower-

dimension r × p basis matrix H. We generated the sample
coefficients W ij in the lower-dimension space from a mul-
tivariate normal distribution with mean µi and covariance
σ∗2
i Ir×r, j = 1, 2, . . . ,ni for each i = 1, 2. Data were obtained

by adding noise, that is, Y = WH + E, with W = (W ij), n
× r, and n = n1 + n2, and where the noise term E, n × p,
was generated from a multivariate normal with mean 0 and
covariance σ2In×n.

We report on the performance of the test procedure for
different values of σ∗2 and σ2, which imply different signal-
to-noise ratios (SNR; the ratio of the two standard devia-
tions). We also looked into varying the distance between the
two mean functions that we measured as ∆∗ = 1

T

∫
(f1(t) −

f2(t))
2 dt, that is, as a standardized L2 norm. We chose two

values of σ∗2, that is, σ∗2 = 102, 104. We chose σ2 to obtain
SNR = 1, 1/3. We generated 25 sample curves from each of
the two groups, each curve with p = 1024 time points. We
varied ∆∗ by setting f 1(t) = f 2(t) for t ∈ [1, . . . , t∗k] and by
choosing various t∗k. We also looked at differences in the op-
posite direction, that is, f 1(t) = f 2(t) for t ∈ [t∗k, . . . , 1024]
and various t∗k.

The analytic form of the power of the NBMF test is not
available. We therefore calculated power and size empirically
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Table 1
Power of the NBMF testing procedure (p = 1024)

(p − t∗k ) for f1 = f2 SNR for σ∗2 = 102

in (1, . . . , t∗k ) 1 1/3

10 1.0 0.690
20 1.0 0.909
30 1.0 0.999
40 1.0 1.0

t∗k for f 1 = f 2 SNR for σ∗2 = 104

in (t∗k, . . . , p) 1 1/3

50 0.801 0.468
75 0.998 0.729
100 1.0 1.0

by generating random sample curves under the null or alter-
native hypotheses, for fixed ∆∗ and SNR. For computational
convenience we fixed the lower-dimensional approximation at
r = 2. This procedure was repeated m times and the propor-
tion of rejections was computed. We used m = 1000. Under
the null hypothesis the test size with σ∗2 = 102 was 0.0510
for SNR = 1 and 0.0630 for SNR = 1/3, whereas with σ∗2 =
104 it was 0.021 for SNR = 1 and 0.0580 for SNR = 1/3.
As expected, results slightly worsen when σ∗2 or σ2 increases.
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Figure 2. The first row shows two sample VT curves after baseline adjustment. The trace in the left panel is an N + L
sample, the one in the right panel an S + L. The second row shows the same two curves after wavelet smoothing and the
third row shows the corresponding trends.

Table 1 shows the power for various t∗k, SNR, and σ∗2. The
test shows good power.

5. Case Study
Let us now describe the application of the proposed testing
procedure to the case study on sodium-lactate-induced panic
attacks.

5.1 Preprocessing of Tidal Volume Traces
We considered data spanning over a time window covering the
sodium lactate infusion. Based on their previous experience
with sodium lactate infusions investigators did not expect a
quick onset of effect. We therefore chose a window of approx-
imately 17 minutes before the end of the infusion. Each sub-
ject has a different tidal volume (Vt) baseline. We performed
baseline adjustment by calculating the median Vt of the base-
line measurements and subtracting it from the Vt trace of
each subject while under sodium lactate infusion. Data are
massive. During the experiment tidal volume measurements
were automatically saved 50 times per second. We thinned
the data by considering traces obtained taking one every kth
data points. We examined plots of several reduced traces to
make sure we were preserving important features of the data
and decided on k = 25 as a safe choice. This gave us two
measurements per second.
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A smoothing procedure was necessary in order to reveal
the breathing patterns of interest to the investigators. The
method we investigated uses wavelet decompositions to filter
out high-to-medium frequency components of the data that
are unrelated to the breathing frequencies, that is they consti-
tute irrelevant information. The details of this preprocessing
step are described elsewhere (Preter et al., 2007). Here we
apply our proposed NBMF procedure to two different prepro-
cessed sampled curves, that is, a smoothed version of the data
and the extracted trends. Figure 2 shows, on the first row, two
sample Vt curves after baseline adjustment, an N + L sample
on the left panel, and an S + L on the right panel. The second
row shows the same two curves after the wavelet smoothing
procedure and the third row shows the corresponding trends.
Figure 3 displays the mean curves for the N + L (line) and S
+ L (dotted line) groups, smoothed traces in the left panel,
and trends in the right panel. Working with trends has the
advantage of essentially avoiding complications with registra-
tion issues. Curve registration, see, for example, Ramsay and
Silverman (1997), is a process according to which curves are
“calibrated” across time, that is, aligned with respect to some
common feature. Registration procedures for respiratory flows
and tidal volumes, however, are not trivial. In our study sub-
jects have very different breathing cycles and basically do not
exhibit any global common feature.
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Figure 3. Mean curves for N + L (line) and S + L (dotted line) after preprocessing. The left panel is for traces after the
wavelet smoothing, the right panel is for the trends.

5.2 Results
The investigators’ claim can be formalized as a hypothe-
sis testing problem with alternative hypothesis of the type
(N + L)(t) ≥ (S + L)(t) for all t (and (N + L)(t) > (S +
L)(t) for at least one t). We had available a total of 65 curves
with 2048 observed points, 37 curves belong to the N + L
group, and 28 to the S + L group. We tested the hypothesis
on the smoothed curves and also on the trends. A very small
r, that is, a large reduction, can be used for the trends. Us-
ing the MSE criterion we selected r = 4 for the trends and
r = 25 for the smoothed data. Figure 4 shows original and
approximated curves by ŴĤ for six subjects.

In order to start our iterative procedure, W was randomly
generated from the uniform distribution in the interval [−100,
100]. Convergence was achieved in only 10 iterations. We
first applied the test to the entire time lag of the data (17
minutes). The test was significant (see Table 2), confirming
the intuition of the investigators that subjects receiving the
naloxone–lactate sequence have greater increases in tidal vol-
ume. Because investigators were also interested in an indica-
tion of the time at which the significance occurs, we applied
the testing procedure to shorter time lags of the data. We
computed the p-values both from the half chi-square distri-
bution of the Follmann’s test statistics for large samples and
from a permutation test. Results are summarized in Table 2
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Figure 4. Original (line) and approximated (dotted line) traces for 6 randomly selected subjects. We used r = 25, 4, for
smoothed data and trends, respectively. The left panel is for traces after the wavelet smoothing, the right panel is for the
trends.

and indicate that the dominance of the N + L mean curve
over the S + L one becomes more and more significant start-
ing at approximately 10 minutes before the end of the sodium
lactate infusion.

These results confirm the hypothesis of the investigators
according to which naloxone pretreatment causes normal indi-
viduals, who presumably have an intact opioid system and are
invulnerable to lactate panicogenesis, to manifest a lactate-

Table 2
P-values of test results with smoothed data and trends. The
half χ2 distribution of the Follmann’s test statistics for large

samples was used. P-values from a permutation test are
reported in parentheses.

Time lag Smoothed Trend

First 5 minutes 0.1435 (0.1795) 0.4172 (0.4295)
First 10 minutes 0.0564 (0.0405) 0.3641 (0.3710)
First 15 minutes 0.0031 (0.0000) 0.0738 (0.0815)
Last 5 minutes 0.0180 (0.0070) 0.0457 (0.0445)
Last 10 minutes 0.0082 (0.0010) 0.0481 (0.0615)
Whole time 0.0030 (0.0000) 0.0483 (0.0535)

provoked tidal volume increment similar to the clinical panic
attack. This is an important result that confirms the pre-
liminary findings of the investigators in support of the fact
that naloxone–lactate interaction may provide an experimen-
tal model of the clinical panic attack in normal subjects. This
finding will need to be confirmed by an experiment double-
blindly blocking the N + L effect by antipanic drugs but
not by panic irrelevant drugs. If this antipanic agent-specific
blockage were found positive, it would afford two useful ad-
vances. Currently, there is no specific screening method for
testing putative antipanic drugs except by experimental treat-
ment of panic disorder patients. Probably of more ultimate
importance: supporting the hypothesis that an opioidergic
dysfunction may be the pathophysiological mechanism un-
derlying panic disorder allows new theoretical and practical
approaches. If opioidergic dysfunction underlies panic patho-
physiology, then the appropriateness of a new class of thera-
peutic agents comes into question (Preter and Klein, 2007).

6. Conclusion
We have proposed a dimension reduction procedure to test the
significance of whether a mean curve dominates another one.
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The key idea of the suggested method relies on preserving the
order in mean, while reducing the dimension of the data, and
then applying a multivariate testing procedure to the reduced
data. In addition, we have proposed an iterative algorithm to
solve the projection problem. Our work was motivated by
a study that looks at high-dimensional, high-frequency mea-
surements of tidal volume on a number of individuals subject
to interventions that may induce panic attacks. Our results
have confirmed the hypothesis of the investigators according
to which subjects receiving sodium lactate after naloxone have
greater increases in tidal volume than subjects who do not re-
ceive the prior infusion of naloxone.
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