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Abstract

In applications that require cost efficiency, sample sizes are typically small so

that the problem of empty strata may often occur in judgment post-stratification

(JPS), an important variant of balanced ranked set sampling. In this paper, we

consider estimation of population cumulative distribution functions (CDF) from

JPS samples with empty strata. In the literature, the standard and restricted

CDF estimators (Stokes and Sager 1988, Frey and Ozturk 2011) do not perform

well when simply ignoring empty strata. In this paper, we show that the orig-

inal isotonized estimator (Ozturk 2007) can handle empty strata automatically

through two methods, MinMax and MaxMin. However, blindly using them can

result in undesirable results in either tail of the CDF. We thoroughly examine

MinMax and MaxMin and find interesting results about their behaviors and per-

formance in the presence of empty strata. Motivated by these results, we propose

modified isotonized estimators to improve estimation efficiency. Through simu-

lation and empirical studies, we show that our estimators work well in different
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regions of the CDF, and also improve the overall performance of estimating the

whole function.

Keywords : Cumulative Distribution Function; Distribution Free; Imperfect Rank-

ing; Isotonic Regression; MinMax; MaxMin; Nonparametric; Ranked Set Sam-

pling; Relative Efficiency; Stochastic Ordering.



1 Introduction

Judgment post-stratification (JPS) is a sampling method proposed by MacEachern,

Stasny and Wolfe (2004), which can be typically described by the following procedure. First,

a random sample of size n is selected, and the characteristic of interest is measured for all

the n units, say Y1, . . . Yn. Then for each unit i (i = 1, . . . n), a random sample of H − 1

additional units is selected and compared with the unit, and a rank Oi (or ranks, if there is

more than one ranker) is assigned to it by eye or some other relatively inexpensive ranking

method (without actual measurement of the H − 1 units). Thus, a JPS sample of size n can

be expressed by {(Yi, Oi)}, where i = 1, ..., n and Oi ∈ {1, ..., H}.

JPS is similar to ranked set sampling (RSS, Chen et al. 2006, Wolfe 2004). Both are useful

in situations where Y is expensive to measure, but sampling units can be easily recruited and

ranked by some means not requiring quantification. Both utilize the assigned ranks to provide

auxiliary information about the measured units. Thus, they can provide improved estimators

of the mean, variance and distribution functions over simple random sampling (SRS) of the

same size. The difference is that the number of measured units, say nh, in the set (or stratum)

with rank h (h = 1, . . . H) is random in a JPS sample, following a multinomial distribution

with parameters (n, 1/H, . . . 1/H), while each nh is typically fixed in advance in a RSS

sample. When the sample size n is large, JPS (with one ranker) is asymptotically equivalent

to a balanced RSS. Recent developments in this area include MacEachern et al. (2002),

MacEachern et al. (2004), Wang et al. (2006), Fligner and MacEachern (2006), Balakrishnan

and Li (2006), Deshpande, Frey and Ozturk (2006), Stokes, Wang and Chen (2007), Frey

(2007a), Frey (2007b), Frey, Ozturk and Deshpande (2007), Ozturk (2007), Samawi and

Muttlak (2007), Ozturk (2008), Li and Balakrishnan (2008), Du and MacEachern (2008),

Wang, Lim and Stokes (2008), Ghosh and Tiwari (2008),Balakrishnan and Li (2008), Ghosh

and Tiwari (2009), Ozturk and Balakrishnan (2009), Frey and Ozturk (2011), Chen and Lim
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(2011), etc.

JPS offers several advantages over RSS. First, if the ranking information is ignored, the

measured observations can be analyzed using conventional statistical methods, as they are

a standard random sample. This is very useful when data are collected for multiple analysis

purposes. In such cases, one could anticipate using some advanced analysis methods not yet

developed for RSS. Secondly, it is possible to allow more than one ranker to provide ranking

information on the same measured unit, while it is difficult to do so in RSS. Thirdly, rankers

can be allowed to express uncertainty about ranks (referred to as imprecise ranking), rather

than being forced into stating an exact ordering. Last, JPS might allow for a large number

of ranking classes (i.e., H) in some applications where perfect ranking is realistic. Since we

only need to determine the rank of each fully measured unit among its comparison group,

pairwise comparison is sufficient if ranking can be done perfectly, which is easy to do even

if H is large. In RSS, by contrast, we need to determine, within each set which is the one

with a given rank, which could be much more difficult when H is large.

In this paper, we will consider the problem of estimating population cumulative distribu-

tion functions (CDF), denoted by F (·), from JPS data with empty strata. Let F[h](y) be the

CDF of the hth stratum. The relationship F (y) =
∑H

h=1 F[h](y)/H holds (Dell and Clutter

1972) for RSS or JPS samples. So F (y) can be estimated by

F̂ (y) =
1

H

H∑
h=1

F̂[h](y), (1)

where F̂[h] is an estimator of the in-stratum CDF F[h]. Existing estimators of F (y) differ in

ways of estimating F[h]s. Stokes and Sager (1988) considered an unbiased estimator of F (y)

for RSS samples, say F̂ e, where in (1) the empirical distribution function (EDF) for the hth

stratum, F̂ e
[h] is used to estimate F[h]; that is, F̂ e

[h](y) =
∑n

i=1 I(Yi ≤ y,Oi = h)/nh, where

I(·) is the indicator function. Ozturk (2007) considered the stochastic ordering constraint

among the in-stratum CDFs from RSS samples,
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F[1](y) ≥ · · · ≥ F[H](y), (2)

and used the isotonized estimator F̂ i
[h] satisfying constraint (2) in equation (1), which can

be easily computed using isotonic regression methods (see Section 2). The corresponding

estimator of F (y) is denoted by F̂ i. Both estimators can be extended to JPS easily. More

recently, Frey and Ozturk (2011) considered constrained estimators of F[h], say F̂ r
[h], in (1)

for JPS samples, where, in a certain sense, the in-stratum CDFs cannot be more extreme

than the CDFs for order statistics from the overall distribution. Their estimator of F (y) is

denoted by F̂ r.

For RSS or JPS applications, the sample size n can be very small because Y is expensive

to measure. Since nhs are random in JPS samples, empty strata can often occur when n

is small and/or H is large so that F[h] cannot be directly estimated. Such problems do not

arise in RSS. In fact, the probability that a JPS sample has at least one empty stratum is a

function of H and n, given by

H−1∑
i=1

(−1)i−1

 H

i

(H − i
H

)n

.

For example, for H = 3 and n = 6, the probability is about 0.26 (see Web Table 1 for

more cases). When used with JPS data, both F̂ e and F̂ r ignore empty strata if any and the

average is taken over all the non-empty ones, namely,

F̂ (y) =
1∑H

h=1 I(nh > 0)

∑
nh>0

F̂[h](y). (3)

By contrast, F̂ i can handle empty cells by pooling over adjacent cells, as will be discussed

in Section 2.

In this paper, we focus on JPS data with empty strata. In Section 2, methods for

computing F̂ i (i.e., MinMax and MaxMin) are discussed; and in the presence of empty

3



strata, the behaviors and performance of the two methods are examined in detail. In Section

3, we propose three modified isotonized estimators of F (y) to deal with empty strata; the

first one is to improve estimation efficiency on the two tails of F (y), and the others are to

improve efficiency in the middle part of F (y). Section 4 compares the performance of the

proposed estimators with the existing ones, F̂ e and F̂ r, for data with different numbers of

rank classes and data with ranking errors. The overall performance of the CDF estimators is

also examined and compared. We provide a data example in Section 5, in which information

from two rankers that used unknown “natural” ranking mechanisms is available. A discussion

follows in Section 6.

2 Behaviors of MinMax and MaxMin Methods

The isotonized estimator F̂ i(y) is motivated by the observation that the distributions from

different (judgment) rank classes are often stochastically ordered, even if ranking is imperfect.

As mentioned in Wang et al. (2008), such ordering holds for a wide range of practical ranking

mechanisms. Because of the inherent variability of the observations, (2) can be violated by

the in-stratum EDFs, especially when the total sample size is small. Reduction in mean

square errors (MSE) can be obtained by imposing the order constraint on the EDFs (Ozturk

2007).

To construct F̂ i(y) from (1), we first need to compute the in-stratum estimates {F̂ i
[h](y)}

for h = 1, . . . , H, i.e., the isotonic regression estimator of {F̂ e
[h](y)} with weights (nh)Hh=1.

That is, given y, {F̂ i
[h]} minimizes the weighted least square

∑H
h=1

{
F̂ e
[h](y)− F[h](y)

}2

nh

under the constraint (2). Further, there exist two analytical forms available for solving the

optimization problem,

F̂ i−
[h] (y) = min

r≤h
max
s≥h

s∑
g=r

ngF̂
e
[g](y)

nrs

(4)
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or

F̂ i+
[h] (y) = max

s≥h
min
r≤h

s∑
g=r

ngF̂
e
[g](y)

nrs

(5)

where nrs =
∑s

g=r ng. When there is no empty stratum, the above two formulas are equiva-

lent (Robertson and Waltman 1968), which can be implemented by the pool adjacent viola-

tors algorithm (PAVA).

For data with empty cells, expressions (4) and (5) need to deal with the case that a

(pooled) stratum could be empty (e.g., if the hth stratum is empty, then nrs = 0 if r =

s = h). The default choice is to ignore the empty ones whenever taking max or min. To be

mathematically rigorous, we make it explicit by first introducing the index set

I(u) =

v |
max(u,v)∑

k=min(u,v)

nk > 0, 1 ≤ v ≤ H


and then re-writing (4) and (5) into

F̂ i−
[h] (y) = min

r≤h,r∈I(H)
max

s≥h,s∈I(r)

s∑
g=r

ngF̂
e
[g](y)

nrs

(6)

and

F̂ i+
[h] (y) = max

s≥h,s∈I(1)
min

r≤h,r∈I(s)

s∑
g=r

ngF̂
e
[g](y)

nrs

, (7)

which reduce to (4) and (5), respectively, if data do not have empty cells. In this paper, we

refer to (6) or F̂ i(y) constructed from (6) as MinMax, and (7) or F̂ i(y) constructed from

(7) as MaxMin. In the presence of empty cells, they are no longer equivalent and perform

very differently. The following two propositions explain their behaviors when they handle

(non)empty cells (see Web Appendices A & B for proof).

Proposition 1. For an empty stratum not located at the boundary (i.e., a stratum with at

least one non-empty stratum at each side), MaxMin uses the estimate of the nearest non-
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empty one on its left to impute it while MinMax uses that of the nearest non-empty one on

its right to do so.

Proposition 2. MinMax and MaxMin give the same estimate for any non-empty stratum

or an empty stratum located at the boundary (i.e., a stratum to whose left/right strata are

all empty).

Note that Propositions 1 and 2 provide an efficient algorithm for computing (6) and (7).

That is, first compute the in-stratum CDF estimates for all non-empty cells using PAVA,

and fill in the empty cells at the boundary using the nearest value available; to fill in those

empty cells not located at the boundary, we use the nearest value to the right for MinMax

while we use the nearest value to the left for MaxMin. Based on the above, we can conjecture

that MinMax works well on the left tail of F (y). The reason is that MinMax imputes the

CDF of a non-boundary empty stratum F[h] by that of the neighbor on its right, which is

always smaller than or equal to F[h]. This may enhance the performance when F (y) is close

to 0, but deteriorate it when F (y) is close to 1. Similarly, MaxMin is expected to work well

on the right tail of F (y) but poorly on the left tail.

To confirm the conjecture, we conducted a simulation study, in which JPS samples (of

different sizes) were generated from the standard normal distribution. To generate a JPS

sample of size n with H rank classes, we first simulated an n×H matrix with all values from

N(0, 1) independently; for each row, we randomly selected one entry with probability 1/H

to enter the JPS sample, along with its rank among the H values of the row. The number

of rank classes H was fixed at 5 and the average sample size n̄ (i.e., n̄ ≡ n/H) was set to 2,

3, 4, 5 and 6, respectively.

Let y = F−1(p), where p ∈ [0, 1]. The relative efficiency (RE) of the isotonized estimator

6



F̂ i over the standard estimator F̂ e in estimating F (y) is defined by

RE(p) =
MSE

{
F̂ e (F−1(p))

}
MSE

{
F̂ i (F−1(p))

} ,
where F̂ i can be F̂ i− constructed from F̂ i−

[h] (MinMax), or F̂ i+ constructed from F̂ i+
[h] (MaxMin).

Proposition 3. Given p, both MSE
{
F̂ i− (F−1(p))

}
and MSE

{
F̂ i+ (F−1(p))

}
are distribution-

free for JPS samples under perfect ranking.

Proposition 3 (see Appendix for proof), combined with that MSE
{
F̂ e (F−1(p))

}
is

distribution-free (Stokes and Sager 1988), leads to the conclusion that RE(p) is distribution-

free for both MinMax and MaxMin under perfect ranking.

We compare the performance of F̂ i− and F̂ i+ based on RE(p), reported in Figure 1 for

p = 0.2, 0.5 and 0.8 and in Web Figure 1 for p = 0.1, 0.2, . . . 0.9, where “-” represents F̂ i−

(MinMax) and “+” represents F̂ i+ (MaxMin). For each setting, RE is estimated from 10,000

replicates. The figures show clear patterns as expected. When p is close to zero, MinMax

preforms very well; and MaxMin performs poorly and can be even worse than the standard

one F̂ e. The opposite occurs when p is close to 1. In the middle part (p around 0.5), they

perform equally well and is more efficient than F̂ e. Similar observations can be made for

different values of H based on simulation results not reported here.

The above results were based on all the JPS samples generated, including many without

any empty strata in which MinMax and MaxMin are strictly equivalent. The observed

difference in performance comes from the samples with at least one empty stratum. To see

the difference more clearly, Figure 2 reports results for p = 0.2, 0.5 and 0.8 (and Web Figure

2 for p = 0.1, 0.2, · · · , 0.9), based on data with at least one empty stratum only; that is,

when we generated a JPS sample and found that it had no empty stratum, we discarded it

and regenerated the sample until we got a sample with at least one empty stratum. A better
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way of generating such data will be discussed in Section 6. (Web) Figure 2 shows similar

patterns as in (Web) Figure 1 (i.e., MinMax/MaxMin performs well on the left/right tail

and poorly on the other end), but with much larger average improvement over the standard

estimator F̂ e.

In practice, once a JPS sample is collected, the information about whether there exist

any empty strata becomes available so that one knows whether he needs to handle the

problem or not. Thus, in any specific application of our methods introduced in Section 3,

the performance on JPS data without empty strata is irrelevant. Throughout the rest of this

paper, we report numerical results based on JPS data with at least one empty stratum; and

ranking is perfect unless specified. Due to the space limit, we only report RE for p = 0.2,

0.5 and 0.8 in all the figures of the paper but report RE for p = 0.1, 0.2, · · · , 0.9 in web

figures of the supplemental materials.

In summary, all the results above show that when empty strata occur, blindly using

MinMax or MaxMin can result in undesirable performance on one of the tails of F (y).

3 Modified Isotonized Estimators

3.1 The median threshold estimator

We have shown by simulation that if y < F−1(0.5), F̂ i−(y) is more efficient, and for y >

F−1(0.5), F̂ i+(y) is more efficient. Motivated by this interesting observation, we consider

the following median threshold estimator to combine MinMax and MaxMin to improve the

efficiency on both tails, namely

F̂1(y) =


F̂ i−(y), if y ≤ F−1(0.5),

F̂ i+(y), if y > F−1(0.5).

(8)
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Obviously, F̂1(y) is equivalent to F̂ i(y) for JPS data without any empty stratum. For data

with empty strata, (8) suggests that when estimating the in-stratum CDFs, we use F̂ i−
[h] (y)

in (6) if y ≤ F−1(0.5), which is equivalent to using the nearest value to the right (where

possible) for imputation of an empty cell; and we use F̂ i+
[h] (y) in (7) if y > F−1(0.5), which

is equivalent to using the nearest value to the left (where possible) for imputation.

Proposition 4. Given p, MSE
{
F̂1 (F−1(p))

}
is distribution-free for JPS samples under

perfect ranking.

The proof of the above result can be found again in Appendix. Since the true median

F−1(0.5) is often unknown in practice, it needs to be estimated from data. Here, we use the

regular sample median ŷmed for simplicity. We also tried the JPS median estimator that is

given by inf{y : F̂ e(y) ≥ 0.5} and found the performance was similar to (or even slightly

worse than) that using ŷmed .

Figure 2 and Web Figure 2 further compare simulated RE(p) of the above combined

estimator F̂1 (“•”) with those of MinMax (“-”), and MaxMin (“+”) under the same simulation

settings in Section 2. Clearly, F̂1 mimics the good performance of MinMax on the left tail

and that of MaxMin on the right tail. As will be shown later, by combining MinMax and

MaxMin through F̂1 , the overall estimation efficiency of the whole CDF is improved, too.

3.2 Alternative isotonized estimators

Though it has excellent performance in both ends, the median threshold estimator F̂1 is

worse than both MinMax and MaxMin in the middle part. This is because the sample

median, rather than the true median, is used as the threshold, according to an unreported

simulation study. The performance is the worst at p = 0.5. The following estimators are

constructed to improve the performance around p = 0.5.

Suppose the hth stratum is empty and not located at the boundary. Here, the basic idea
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is to find an in-stratum estimator F̂ ∗[h](y) to fill the “gap” between F̂ i
[h−](y) and F̂ i

[h+], where

the stratum h−/h+ is the nearest nonempty one on its left/right. Let t index the nonempty

strata. We want the “filler” to be close to the isotonized estimates F̂ i
[t]’s from the nonempty

strata. Thus, we set

F̂ ∗[h](y) = arg
x

min
∑
t

{
F̂ i
[t](y)− x

}2

satisfying the constraint F̂ i
[h−](y) ≥ x ≥ F̂ i

[h+](y). This leads to

F̂ ∗[h](y) =


F̄ i(y),

F̂ i
[h−](y),

F̂ i
[h+](y)

if F̂ i
[h−](y) ≥ F̄ i(y) ≥ F̂ i

[h+](y)

if F̂ i
[h−](y) ≤ F̄ i(y)

if F̄ i(y) ≤ F̂ i
[h+](y)

(9)

where F̄ i(y) is the average of F̂ i
[t](y)’s over the nonempty strata. The estimator (1) using

F̂ ∗[h] to estimate F[h] is denoted by F̂2.

Another estimator that would be natural to consider for better performance in the middle

is to use the average of MinMax and MaxMin, namely,

F̂3(y) =
F̂ i−(y) + F̂ i+(y)

2
. (10)

This is equivalent to estimating F[h] by (F̂ i
[h−] + F̂ i

[h+])/2 for any empty stratum not located

at the boundary, while for a stratum at the boundary, it is equivalent to estimating F[h] by

that of the nearest nonempty one.

Proposition 5. Given p, both MSE
{
F̂2 (F−1(p))

}
and MSE

{
F̂3 (F−1(p))

}
are distribution-

free for JPS samples under perfect ranking.

See Appendix for proof. Again, we can use (Web) Figure 2 to compare simulated RE(p)

of the three modified isotonized estimators F̂1 (represented by “•”), F̂2 (represented by “*”),
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and F̂3 (represented by “4”), as well as F̂ r (represented by “#”, Frey and Ozturk 2011),

over the standard estimator F̂ e under perfect ranking. When p is close to 0.5, both F̂2 and

F̂3 indeed improve a lot over F̂1, and F̂3 is clearly the best among all. When p is close

to 0 or 1, F̂1 is clearly the best and F̂2 is better than F̂3. All the new estimators F̂1, F̂2

and F̂3 greatly outperform F̂ r and F̂ e everywhere. Note that F̂ r and F̂ e do not assume

the stochastic ordering (2) so that they are not expected to do well under perfect ranking.

They might do somewhat better under incorrect ranking that violates the ordering. Also,

as mentioned in the introduction, both F̂ r and F̂ e take the average over non-empty strata,

which is equivalent to imputing any empty stratum by the average of non-empty strata.

Doing so might make the in-stratum CDF estimates violate the stochastic ordering or the

constraint originally imposed, which could degrade their performance.

4 Simulation

4.1 Comparison of RE(p) for different H

We examined the performance of the proposed estimators based on RE(p) for different

numbers of rank classes. For F̂1, F̂2 and F̂3, we considered H = 2, 4, 6, 8, 10 and fixed the

average sample size n̄ at 3. We estimated RE(p) based on 10,000 replicates under each

setting. For F̂ r, since the algorithm is slow, we only considered H = 2, 4, 6 with n̄ = 3;

and for each, we used 2500 replicates instead. (Web) Figure 3 shows that among the three

new estimators, F̂1 is the best on the tails, F̂3 is the best in the middle part, and F̂2 is

somewhere between F̂1 and F̂3. They all perform much better than F̂ r for every p, which is

slightly better than F̂ e. From Web Figure 3, it appears that when p is around 0.5, REs of

F̂1, F̂2 and F̂3, increase as H increases for the fixed average sample size. However, for all the

estimators, RE is not a monotone function of H for small or large values of p. In addition,
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it is interesting to observe that for H = 2, all the estimators are the same as the standard

one F̂ e when there is an empty stratum. This is because there is only one choice available

for imputation.

4.2 Comparison of MISE for different distributions

To compare the overall performance of the CDF estimators, we considered the mean in-

tegrated squared error (MISE), which is defined as E
[∫∞
−∞

{
F̂ (y)− F (y)

}2

dy

]
. In each

iteration, we compute
∫∞
−∞

{
F̂ (y)− F (y)

}2

dy. Then by taking the average over multiple

iterations, we obtain simulated MISE. The relative efficiency of F̂ over F̂ e is now defined

as the ratio of MISEs, i.e., MISE(F̂ e)/MISE(F̂ ). Although the performance of the esti-

mators at any single point F−1(p) is distribution free,MISE does depend on the population

distribution. This is because∫ ∞
−∞

{
F̂ (y)− F (y)

}2

dy =

∫ 1

0

{
F̂
(
F−1(p)

)
− p
}2

dF−1(p) =

∫ 1

0

{
F̂
(
F−1(p)

)
− p
}2 1

f(F−1(p))
dp.

We generated JPS data with at least one empty stratum from different distributions

including Unif(0, 1), N(0, 1), Exp(1), Beta(0.5, 0.5). Here, H = 5 and n̄ = 3. The number

of iterations was 10,000 for F̂1, F̂2 and F̂3, and 2,500 for F̂ r. The left panel of Table 1 shows

that in terms of the overall performance in estimating F (y), F̂3 > F̂2 > F̂1 > F̂ r > F̂ e for

all the four distributions considered.

4.3 Comparison of RE(p) under imperfect ranking

In practice, ranking errors might often occur. To study the robustness of the CDF estima-

tors under imperfect ranking, we conducted two simulation studies. In the first study, we

considered Dell and Clutter’s ranking error model, Xi = Yi + εi, where εi is the error term
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with mean zero; and actual measurements are taken on Yis, but ranking is done based on

Xis. We generated Yi
iid∼ N(0, 1) and εi

iid∼ N(0, 0.78) so that the correlation between X and

Y was about 0.75. Again, we set H = 5 and n̄ = 2, 3, 4, 5, 6, and generated JPS samples

with at least one empty stratum. In (Web) Figure 4, all the estimators demonstrate similar

patterns to those observed under perfect ranking, but the differences become smaller here.

The modified estimators F̂1, F̂2 and F̂3 are still consistently better than F̂ r and F̂ e for all

the p values, though the improvement is not as big as that without ranking errors.

In our second study, we considered JPS data with purely random ranking, an extreme

case of imperfect ranking, in which the “<” does not hold in (2) and the in-stratum CDFs

are all equal to the population CDF. As in Section 4.2, we set H = 5 and n̄ = 3, and report

MISE for Unif(0, 1), N(0, 1), Exp(1), Beta(0.5, 0.5) in the right panel of Table 1. We can

see that the overall performance follows the order F̂2 > F̂3 ≥ F̂1 > F̂ r > F̂ e for all the

distributions considered, and the differences in performance become even smaller, compared

to the case ρ = 0.75. The only difference from the order reported for perfect ranking in

Section 4.2 is that here, F̂2 outperforms F̂3 and becomes the best, suggesting F̂2 might be

more robust to ranking errors than F̂3.

5 An Empirical Study

This section provides an empirical comparison of the five estimators F̂1, F̂2, F̂3, F̂ r and F̂ e

under practical situations including imperfect ranking and multiple rankers, using data in

Table 2 of Wang et al. (2008) (now reproduced as Web Table 2 for easy access). The table

was derived from a data set in Weisberg (1985) that consists of allometric measurements for

62 species of mammals. The variable of interest is the log of adjusted brain weight, defined

as Y = log{brain weight/(body weight)2/3}; and the goal of our analysis is to estimate the

population CDF of Y . As mentioned in Wang et al. (2008), to produce the table, the species
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were randomly grouped into 20 sets, three species each (two were randomly discarded for this

purpose). Within each set, ranks of Y are available from two different rankers. The rankers

did not know the value of Y for each species before they assigned ranks. So they made

judgments based on the conjecture that a “clever” species tends to have a large adjusted

brain weight. Here, ranking is not perfect and the data do not follow any known ranking

error model.

In our experiment, selection of JPS samples was simulated, where we set H = 3 and

n̄ = 2, 3, 4, 5, 6; and for each sample, the estimates of the CDF were calculated. To generate

a JPS sample of size n = H × n̄, n sets were randomly drawn with replacement from the

total 20 sets and then one species was randomly drawn from each selected set to enter the

JPS sample. In total, 10,000 samples for each setting, all with empty strata, were generated.

For the purpose of evaluation, the 60 mammals were treated as the “true” population, and

the EDF computed from their data was taken as the true population CDF when computing

MSEs or MISEs, which is a step function itself.

We first considered estimation using only one ranker. Web Figure 5 reports RE(p) of

the three new estimators F̂1 , F̂2, F̂3 and F̂ r over F̂ e at different p based on ranks from the

second ranker. The left panel of Table 2 reports RE based on MISE to examine the overall

performance. We can observe that again, F̂1 is the best when p is close to 0 or 1; F̂2 and

F̂3 are about the same, which are better than the others when p is close to 0.5. Also, note

that REs for p = 0.9 are greater than those for all the other p values, especially for F̂1. This

indicates that under a natural ranking process, the performance can be very different on the

two tails. In terms of the overall performance, we have F̂2 ≈ F̂3 > F̂1 > F̂ r > F̂ e from Table

2. Note that when H = 3, F̂2 and F̂3 are identical. The slight difference we observe here is

due to drawing separate samples for the two estimators.

In spirit of Wang et al. (2008), we considered estimation using two rankers. Let Oij be

the judgment order of Yi assigned by ranker j among its own set of unmeasured units, for
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j = 1, 2. We first transposed a JPS sample, denoted by D = [(Yi,Oi1, Oi2)]
n
i=1, to

D̃ = [(Y1, O11), (Y1, O12), (Y2, O21), (Y2, O22), ..., (Yn, On1), (Yn, On2)]
T ,

where each Yi value was replicated twice; then we used the CDF estimators with D̃ as if

there were only one ranker but 2n observations. Web Figure 6 and the right panel of Table

2 give results. Obviously, conclusions are consistent with those from the case of one ranker.

In addition, when compared with the case of one ranker, it appears the improvement from

F̂2 or F̂3 increases while that from F̂ r decreases.

To summarize, this example establishes that the new estimators for JPS data with empty

strata can provide an advantage even when the error-prone ranking process is a “natural”

one that does not follow a known model.

6 Discussion

Like ranked set sampling, judgment post-stratification is useful in applications requiring

cost efficiency. Such applications typically have small sample sizes. Dealing with empty

strata when n is small or H is relatively large is an important issue. In this paper, the

behaviors and performance of the two methods, MinMax and MaxMin, associated with the

isotonized CDF estimator F̂ i proposed by Ozturk (2007), have been carefully examined in

the presence of empty strata. It has been found that MinMax works well on the left tail,

MaxMin works well on the right tail and they are about the same in the middle part of

F (y). Motivated by this observation, three modified isotonized estimators F̂1, F̂2 and F̂3,

have been proposed to combine the strength of MinMax and MaxMin. Through simulation

studies and a data example, we have shown that all the three estimators can achieve better

estimation performance over the existing estimators F̂ r and F̂ e in different regions of F (y),
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which also improve the overall performance in estimating the whole function. Among the

three, it has been consistently observed that F̂1 has the best performance on both tails of

the CDF, and F̂3 is the best in the middle part under perfect ranking. In the presence of

ranking errors, F̂2 appears to be more robust than F̂3.

In our numerical studies, we generated JPS samples with at least one empty stratum

by simply discarding samples without any empty cell. This can be very inefficient since the

probability of having at least one empty cell is very small sometimes. As one of the referees

suggested, the following procedure is much faster, given the sample size n and the number of

rank classes H: (1) select a random number h from the uniform distribution on {1, . . . , , H}

and let nh = 0; (2) generate (n1, . . . , nh−1, nh+1, . . . nH) from the multinomial distribution

with parameters n and (1/(H − 1), . . . , 1/(H − 1)); (3) accept the vector (n1, . . . , nH) with

probability 1/c, where c is the number of zeros in the vector (n1, . . . , nH); if accepted, go to

step (4), otherwise go to step (1); (4) generate an n×H matrix with all values from N(0, 1)

(or any other distribution) independently; in each row, put all the H values in an increasing

order; then we select nh values from the hth column for h = 1, . . . , H, one value from each

row, to enter the JPS sample.

Our paper presents the first but important attempt at dealing with the issue of empty

strata for JPS samples by providing three easy-to-construct CDF estimators. There is ample

space in estimating population CDFs for future research. For example, there are various

potential ways to build in directional sensitivity of the two tails, such as using some smooth

transition from MinMax to MaxMin rather than the jumpy transition used in F̂1. One could

also use the Rao-Blackwell Theorem with F̂1 for possible improvement through averaging. In

the case that a sample is highly unbalanced, one might want to try other versions of median

estimators in F̂1 such as weighted ones, to avoid bias. Further, instead of assigning equal

weights to MinMax and MaxMin as in F̂3, one could create weights for the order statistics

of the sample, and then use these weights to construct a weighted average of MinMax and
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MaxMin.

Finally, we note that under the context of JPS data with empty strata, the estimation of

the in-stratum CDFs is important itself and would be useful to reduce the impact of ranking

errors on statistical procedures. It would be interesting to investigate it in depth in the

future. In addition, quantile estimation could be a natural topic to consider next, too.

7 Supplementary Materials

Web Appendices, Tables and Figures referenced in Sections 1-5 are available under the Paper

Information link at the Biometrics website http://www.biometrics.tibs.org.
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Appendix: Proof of Propositions 3-5

1. We first show that for JPS data, under perfect ranking, the mean squared error

MSE
{
F̂ (F−1(p))

}
is distribution free if F̂ is in the form of g({F̂ e

[h]}Hh=1, {nh}Hh=1),

where g is a certain function.

Let t = F−1(p), and Y[h]i be the ith observation in the hth stratum, i = 1, . . . , nh. The

EDF of the non-empty hth stratum is

F̂ e
[h](t) =

1

nh

nh∑
i=1

I(Y[h]i ≤ t).
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Note that I(Y[h]i ≤ t) = I(Y[h]i ≤ F−1(p)) ∼ Bernoulli(ph), where

ph =
H∑
j=h

 H

j

 pj(1− p)H−j

under the perfect ranking. Thus, nhF̂
e
[h](t) ∼ binomial(nh, ph).

If F̂ = g({F̂ e
[h]}Hh=1, {nh}Hh=1), then

MSE
{
F̂ (t)

}
= E

{
F̂ (t)− p

}2

= E
{
g
(
{F̂ e

[h](t)}Hh=1, {nh}Hh=1

)
− p
}2

= E

[
E
{
g
(
{F̂ e

[h](t)}Hh=1, {nh}Hh=1

)
− p
}2

| {nh}Hh=1

]

Given {nh}Hh=1, F̂ e
[h](t)’s are independent. So the inner expectation given {nh}Hh=1 is a

function of {ph}hi=1, {nh}Hh=1 and p . Since all phs are functions of p, we have

MSE
{
F̂ (t)

}
= E

{
g0
(
p, {nh}Hh=1

)
| {nh}Hh=1

}
.

Further, under perfect ranking, (n1, · · · , nH) ∼ multinomial(n, 1/H, · · · , 1/H). Thus

MSE
{
F̂ (t)

}
is a function of p and n for a given H, which is distribution free.

2. It is easy to see from equations (6)-(10), MaxMin, MinMax, F̂1 (assuming that the

true median is known) F̂2 and F̂3 are all in the form of G({F̂[h]}Hh=1, {nh}Hh=1). Thus,

theirMSEs are all distribution free under perfect ranking.
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Tables and Figures

Perfect Ranking Random Ranking
Est. N(0, 1) Unif(0, 1) Exp(1) Beta(0.5, 0.5) N(0, 1) Unif(0, 1) Exp(1) Beta(0.5, 0.5)

F̂1 1.31 1.28 1.31 1.26 1.11 1.09 1.12 1.08
F̂2 1.34 1.36 1.33 1.37 1.12 1.12 1.13 1.12
F̂3 1.39 1.43 1.35 1.49 1.11 1.11 1.12 1.11
F̂ r 1.06 1.04 1.05 1.03 1.06 1.04 1.08 1.02

Table 1: Simulated relative efficiencies (defined as ratio of MISEs) of the three modified
isotonized estimators F̂1, F̂2, F̂3 and F̂ r (Frey and Ozturk 2011) over the standard estimator
F̂ e, for JPS data (H = 5, n̄ = 3) with at least one empty stratum from different distributions
under perfect ranking and random ranking, respectively.

Case 2nd Ranker Both Rankers
AVG. Size n̄ 1 2 3 4 1 2 3 4

F̂1 1 1.14 1.14 1.15 1 1.12 1.13 1.20
F̂2 1.08 1.16 1.18 1.20 1.10 1.17 1.21 1.25
F̂3 1.08 1.16 1.17 1.20 1.11 1.16 1.21 1.24
F̂ r 1.05 1.08 1.06 1.03 1.03 1.02 1.01 1.01

Table 2: An empirical study of adjusted brain weights of mammals: simulated relative
efficiencies (defined as ratio of MISEs) of F̂1, F̂2, F̂3 and F̂ r over the standard estimator
F̂ e are reported for each n̄ under two cases: (1) one ranker only; and (2) two rankers, based
on JPS data (H = 3) with at least one empty strata.
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Figure 1: Simulated relative efficiencies of F̂ i− (MinMax, represented by “-”), F̂ i+ (MaxMin,
represented by “+”), F̂1 (represented by “•”), F̂2 (represented by “*”), F̂3(represented by
“4”), and F̂ r (represented by “#”, Frey and Ozturk 2011) over the standard estimator F̂ e,
as a function of average sample size (the number of rank classes H is fixed at 5), based on
JPS data from perfect ranking (including those without empty strata).
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Figure 2: Simulated relative efficiencies of F̂ i− (MinMax, represented by “-”), F̂ i+ (MaxMin,
represented by “+”), F̂1 (represented by “•”), F̂2 (represented by “*”), F̂3(represented by
“4”), and F̂ r (represented by “#”, Frey and Ozturk 2011) over the standard estimator F̂ e,
as a function of average sample size (the number of rank classes H is fixed at 5), based on
JPS data from perfect ranking with at least one empty stratum.
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Figure 3: Simulated relative efficiencies of the three modified isotonized estimators F̂1 (rep-
resented by “•”), F̂2 (represented by “*”), F̂3(represented by “4”), and F̂ r (represented by
“#”, Frey and Ozturk 2011) over the standard estimator F̂ e, as a function of number of rank
classes (the average sample size n̄ is fixed at 3), based on JPS data from perfect ranking
with at least one empty stratum.
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Figure 4: Simulated relative efficiencies of the three modified isotonized estimators F̂1 (rep-
resented by “•”), F̂2 (represented by “*”), F̂3(represented by “4”), and F̂ r (represented by
“#”, Frey and Ozturk 2011) over the standard estimator F̂ e, as a function of average sample
size (the number of rank classes H is fixed at 5), based on JPS data from imperfect ranking
(ρ = 0.75) with at least one empty stratum.


