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Abstract

We propose an efficient method to compute the maximum likelihood
estimator of ordered multinomial probabilities. Using the monotonic-
ity property of the likelihood function, we reformulate the estimation
problem as a geometric program, a special type of mathematical opti-
mization problem, which can be transformed into a convex optimiza-
tion problem, and then solved globally and efficiently. We implement a
numerical study to illustrate its computational merits in comparison to
the m-PAV algorithm proposed by Jewell and Kalbfleisch (2004). We
also apply our proposed method to the current status data in Jewell
and Kalbfleisch (2004).

1 Introduction

This paper is motivated by the recent work of Jewell and Kalbfleisch (2004)

on maximum likelihood estimation of ordered multinomial parameters. They

studied a cross sectional dataset containing the age and menopausal status

of 3581 female respondents between the year 1960 and 1962 from the Health

Examination Survey conducted by the National Center for Health Statistics.

The main problem, as in McMahon and Worcester (1966) and Krailo and
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Pike (1983), is the estimation of survival probabilities in the presence of

two competing risks, natural menopause versus operative menopause (i.e.,

menopause caused by surgery). By considering nonparametric estimation

of the survival function related to each risk, they formulated the problem

into obtaining the maximum likelihood estimator (MLE) of multinomial

probabilities subject to constraints, where the cross-sectional data naturally

induce order constraints on the probabilities of menopause caused by each

risk among different age groups.

To obtain the MLE under order constraints, Jewell and Kalbfleisch (2004)

proposed a modified pooled-adjacent violator (m-PAV) algorithm. The m-

PAV algorithm iteratively estimates the age-specific probabilities of natural

and operative menopause using a modified one dimensional PAV algorithm,

which pools adjacent violators (of monotone constraints) by maximizing the

local likelihood function of the violators. Thus, it needs to solve many local

optimization problems, each of which is non-linear and not fast computa-

tionally. See Section 2 for further review on this.

In this paper, we suggest an alternative method to compute the MLE

of ordered multinomial probabilities and compare it with the m-PAV algo-

rithm. Our method is based on geometric programming, a special case of

nonlinear programming. A geometric program (GP) can be transformed

into a convex optimization problem, then solved globally and efficiently by

modern interior-point methods. See Boyd et al. (2004) for details.

It should be mentioned that in the literature, geometric programming

had been used to solve several interesting problems related to maximum like-

lihood estimation of multinomial probabilities. Alldredge and Armstrong
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(1974) considered the problem of estimating overlap sizes created by in-

terlocking sampling schemes. Mazumdar and Jefferson (1983) considered

three examples: (1) estimation of gene frequencies of A, B, O from fre-

quencies of the four blood types O, A, B and AB; (2) estimation of prob-

abilities p and p′ by maximizing a specific likelihood function L(p, p′) =

pa(1 − p)A−ap′b(1 − p′)B−b(pp′)c(1 − p′p)C−c; (3) estimation of the success

probabilities p1, . . . , pk when sums of k independent Bernoulli random vari-

ables are observed. Briker, Kortanek, and Xu (1997) considered estimation

of cell probabilities in a two-dimension table under the constraints on local

odd ratios. All these earlier applications of GP were restricted to specific

and small-sized problems, perhaps due to the fact that solution methods for

GP were very slow at the time. As will be seen in next section, the problem

we solve is more general and harder in nature, with many existing applica-

tions from various fields. More attractively, recent technical breakthroughs

in geometric programming allow us to handle large-sized data easily.

The paper is organized as follows. In Section 2, we formally state the

problem of estimating ordered multinomial probabilities, and discuss the ex-

isting solution (i.e., the m-PAV algorithm). In Section 3, we briefly introduce

geometric programming and then relax the problem under consideration to

a GP. Section 4 shows two numerical examples, in which we compare the

performance of the m-PAV algorithm and the proposed method. The first

example is a re-analysis of the current status data in Jewell and Kalbfleisch

(2004). The second studies the case with large number of groups. Section 5

concludes with a discussion.
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2 The Problem and Existing Solution

Suppose that X1, . . . , XI are independent multinomial random vectors, each

with J possible outcomes. That is, for 1 ≤ i ≤ I, Xi = (Xi1, . . . , XiJ)

has a multinomial distribution with known index ni and probabilities pi =

(pi1, . . . , piJ

)
satisfying

∑J
j=1 pij = 1. Also, for some j ∈ {1, . . . , J −1}, pijs

are known to satisfy the order constraints

0 ≤ p1j ≤ · · · ≤ pIj ≤ 1. (1)

Because the equality
∑J

j=1 pij = 1 holds for each i, there exists at least one

j for which (1) does not hold. Hence in (1), without loss of generality, we

assume j 6= J .

Given the observed cell counts xijs, the likelihood function is given by

L(
p1, . . . , pI

)
=

I∏

i=1

J∏

j=1

p
xij

ij . (2)

The MLE of pijs is the solution to the optimization problem

max L(
p1, . . . , pI

)
subject to 0 ≤ p1j ≤ · · · ≤ pIj ≤ 1, for some j 6= J∑J

j=1 pij = 1 for all i

. (3)

This problem is a signomial programming problem that is very difficult to

solve in general (Boyd and Vandenberghe, 2003). However, it is of great

practical importance since it is well related to current status data with

competing risks, which have caught substantial attention recently (Jewell,

Van Der Laan and Henneman, 2003).

Jewell and Kalbfleisch (2004) solved the problem iteratively in j through

the m-PAV algorithm. For example, in the case of J = 3, let Xi ∼ multi-

nomial (ni, pi1, pi2, pi3) for 1 ≤ i ≤ I, and constraints of the form (1) hold
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for j = 1, 2. The m-PAV algorithm iterates between the following two steps

until convergence:

(i) hold (pi2)I
i=1 fixed at its estimate from the previous step (or its initial

value if this is the first iteration), and maximize the likelihood function

over (pi1)I
i=1 under the order constraints on (pi1)I

i=1;

(ii) hold (pi1)I
i=1 fixed at its estimate from (i), and maximize the likelihood

function over (pi2)I
i=1 under the order constraints on (pi2)I

i=1.

In step (i), the objective function of
(
p11, . . . , pI1

)
is given by

φ
(
p11, . . . , pI1

)
=

I∑

i=1

{
xi1 log pi1 + xi3 log

(
1− pi1 − pi2

)}

=
I∑

i=1

{
xi1 log pi1 + xi3 log

(
ci − pi1

)}
(4)

subject to the constraints p11 ≤ · · · ≤ pI1 and 0 ≤ pi1 ≤ ci, where ci = 1−pi2

are constants satisfying 0 ≤ cI ≤ · · · ≤ c1 ≤ 1. To solve (4), the authors

proposed a modification of the original PAV algorithm (Barlow et al. 1972):

if the current estimates of {pi1, i ∈ α} violate the isotonic constraint for

the set α of consecutive integers from {1, . . . I}, then pool the estimates of

{pi1, i ∈ α} by using the solution q̂ to the following univariate maximization

problem

maxq
∑

i∈α{xi1 log q + xi3 log(ci − q)}. (5)

Here, unlike the classical isotonic regression, an explicit expression of the

solution to (5) is not available because ci varies over i. Thus, (5) can only

be solved numerically. The details of step (ii) are the same as those of step

(i).
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It is easy to see that the m-PAV algorithm solves the overall multi-

dimensional optimization problem through solving many one dimensional

maximization problems in (5) iteratively. The number of the subproblems is

proportional to the number of adjacent violators, and increases as the group

number I increases. Though these subproblems are easier to solve than

the overall problem (3), each of them is still nonlinear without an explicit

solution, and so requires additional computation. Since we need to solve a

large number of such univariate subproblems, the m-PAV algorithm might

not be computationally efficient, especially when there exist many groups

(i.e., large I).

The m-PAV algorithm also requires a special treatment of boundary

probability estimation, especially in the case of zero observation at bound-

aries. Users need solve the optimization problem for boundary observations

separately and then insert the estimates in the main m-PAV procedure.

In this paper, instead of solving (3) directly, we consider a relaxed prob-

lem,

minimize L−1
(
p1, . . . , pI

)
subject to 0 ≤ p1j ≤ p2j ≤ · · · ≤ pIj ≤ 1, for some j 6= J∑J

j=1 pij ≤ 1 for all i

, (6)

which, we claim, is easy to solve via geometric programming, but gives

the same solution as that to (3). Note that minimizing the inverse of the

likelihood in (6) is equivalent to maximizing the likelihood in (3).

As will be shown later, our method is faster than the m-PAV algorithm

and requires no additional effort in boundary probability estimation.
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3 The GP-based Method

3.1 Geometric program

We first give a brief description of geometric programming.

We start with two classes of functions, monomials and posynomials,

which define a geometric program. Let x1, . . . , xn denote n real positive

variables, and x = (x1, . . . , xn) be a vector with components xi. A mono-

mial is a real valued function f of x with the form

f(x) = cxa1
1 xa2

2 · · ·xan
n , (7)

where c > 0 and ai ∈ R. A posynomial is the sum of one or more monomials,

namely

f(x) =
K∑

k=1

ckx
a1k
1 xa2k

2 · · ·xank
n , (8)

where each ck is positive. Note that any monomial is a posynomial.

A geometric program is an optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , u,

gj(x) = 1, j = 1, . . . , v,

where fis are posynomials for i = 0, . . . , u, all gjs are monomials, and x is

the vector of positive optimization variables xis.

A GP can be easily converted to a nonlinear convex optimization prob-

lem, i.e., a problem with a convex objective function, convex inequality

constraints, and linear equality constraints. To do this, we use logarithmic

transformation of the variables xi, yi = log xi (so xi = eyi). Instead of min-

imizing the objective f0, we minimize its logarithm log f0. We replace the

7



inequality constraints fi ≤ 1 with log fi ≤ 0, and the equality constraints

gi = 1 with log gi = 0. The transformation results in the following problem

minimize log f0(ey)
subject to log fi(ey) ≤ 0, i = 1, . . . , u,

log gj(ey) = 0, j = 1, . . . , v,
(9)

with variables y = (y1, . . . , yn). Here, we use ey to express componentwise

exponentiation: (ey)i = eyi .

It can be verified that the logarithm of a posynomial of x is convex in

log x, and the logarithm of a monomial of x is linear in log x. Thus, the

above problem is a convex optimization problem for which efficient solution

methods are well developed (Boyd and Vandenberghe, 2004; Nesterov and

Nemirovsky, 1994; Norcedal and Wright, 1999). In particular, interior-point

methods are very efficient and robust for convex problems. For example,

standard interior-point algorithms can solve a GP with 1, 000 variables and

10, 000 constraints within minutes, on a small desktop computer (Boyd et

al., 2004). It is also possible to optimize a GP solver for a particular ap-

plication using its special structure to gain more efficiency. High-quality

implementation of the primal-dual interior-point method for GPs is avail-

able from various existing solvers. Examples include cvx (Grant, Boyd and

Ye, 2005), ggplab (Mutapcic, Koh, Kim and Boyd, 2006), and YALMIP

(Löfberg, 2003), which all have simple interfaces that recognize and solve

GPs.
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3.2 GP relaxation of the main problem

For any GP, the objective and inequality constraint functions must be posyn-

omials, and the equality constraint functions must be monomials. In our

main problem (3), the objective function
∏I

i=1

∏J
j=1 p

xij

ij is a monomial of

pijs, and the inequality constraints in (1) are monomials. Hence, they are

all posynomials. However, (3) is not a GP, since its equality constraints,
∑J

j=1 pij = 1 for all i, are posynomials rather than monomials. Fortunately,

the relaxed problem (6) is a GP. We now establish the equivalence between

(3) and (6), by showing that (6) is optimized only when “=” is attained in

the inequalities
∑J

j=1 pij ≤ 1.

It can be seen that the posynomials
∑J

j=1 pij are monotone increasing

in pijs, the objective to be minimized in (6) is decreasing in pijs, and no piJ

appears in the inequality constraints of the form (1). Thus, at the optimal

point, each inequality constraint
∑J

j=1 pij ≤ 1 must be tight. In other

words, for any pi =
(
pi1, . . . , piJ

)
, if the inequality

∑J
j=1 pij < 1 is strict,

then pi cannot be optimal since p̂i with p̂ij = pij for j = 1, 2, . . . , J − 1, and

p̂iJ = piJ +
(
1−∑J

j=1 pij

)
is feasible for (6) with

∑J
j=1 p̂ij = 1 but

L−1
(
p1, . . . , pi, . . . , pI

)
> L−1

(
p1, . . . , p̂i, . . . , pI

)
.

Hence, problems (3) and (6) are equivalent, and so we can solve the original

problem (3) through the tractable GP (6).

9



4 Examples

To compare our new method with the m-PAV algorithm, we conduct two

numerical studies. The first is to re-analyze the current status data in Jewell

and Kalbfleisch (2004), using the proposed GP-based method; in the second

study, we focus on large scale problems and compare the computational

efficiency of the methods. Note that (3) is a convex optimization problem,

whose solution is unique. Thus, the estimates from the proposed method

should be the same as those from m-PAV. We show below our method is

much faster than m-PAV.

Our experiments were implemented in a 1.80GHz Pentium IV computer

using the software MATLAB. The code is available at http://eclass.

yonsei.ac.kr/johanlim/multiMLE.html. In MATLAB, a GP is solved

through calling external functions ”gpsolve” or ”gpcvx”, of which inputs

are the coefficients and exponents of posynomials (monomials) of the prob-

lem.

4.1 Current status data

The current status data we use contain 3581 female respondents of age

between 26 and 59 in the Health Examination Survey, which can be found

in Table 1 of Jewell and Kalbfleisch (2004). For each age group i, the data

consist of four columns (ni, xi1, xi2, xi3), where ni is the total number of

women in the group, xi1, xi2 and xi3 are the number of women with natural

menopause, operative menopause and nonmenopause, respectively. Here

I = 26 and J = 3 in the setting of Section 2.
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Following Jewell and Kalbfleisch (2004), we assume that (xi1, xi2, xi3) is

from a multinomial distribution with
(
ni, pi1, pi2, pi3

)
. The probability pi1

(or pi2) is the probability that each individual has natural (or operative)

menopause before age i. Hence, both pi1 and pi2 are monotone increasing

in i.

The maximum likelihood estimate is the solution to

maximize L(
p1, . . . , pI

)
=

∏I
i=1 pxi1

i1 pxi2
i2 pxi3

i3

subject to p1j ≤ p2j ≤ · · · ≤ pIj for j = 1, 2.
pi1 + pi2 + pi3 ≤ 1 for i = 1, 2, . . . , 26.

(10)

We apply the GP-based method to solve the above optimization problem.

The GP of this example has 78 variables and 76 constraints including 50

order constraints. The duality gap is set to 10−13, which means that the

maximum likelihood value we find is within the gap 10−13 from the true

maximum likelihood value. The number of Newton steps required to solve

the GP is 86 and the CPU time is about 1.35 seconds in total. In contrast,

the m-PAV algorithm needs to solve about 106 univariate subproblems (5),

each of which requires approximately 40 Newton steps; the CUP time is

52.80 seconds in total. In fact, the computing time of m-PAV relies on the

algorithm chosen to solve (5). Since each of the subproblems is a GP too,

we use geometric programming to solve it, which can be much faster than

any other algorithm.

The estimates from our method, as expected, are the same as those

reported in Jewell and Kalbfleisch (2004).
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4.2 Large scale problems

To investigate the computational efficiency of the proposed approach in large

scale problems, we generate 50 date sets of 120 time points with three com-

peting events. So I = 120, J = 3, and each data set is a 120 × 3 matrix.

The i-th row vector of each data set is independently generated from the

multinomial distribution with ni = 200 and pi =
(
0.004i, 0.003i, 1− 0.007i

)
.

We apply the GP-based method and the m-PAV algorithm to find the

ordered multinomial probabilities for each data set. Here, when using the

m-PAV algorithm, we do not separately solve the boundary problem if zero

boundary observation occurs, since doing so requires extra programming

effort. As a result, the reported CPU time for the m-PAV algorithm is

shorter than its true CPU time. Table 2 reports the average CPU time and

standard deviation in computing the MLEs of the 50 data sets. It shows

that the GP-based method is much faster than the m-PAV algorithm.

m-PAV GP-method

mean (std) 743.9960 (111.7539) sec. 3.4095 (0.2614) sec.

5 Discussion

In this paper, we have described a non-iterative method for estimating or-

dered multinomial probabilities, based on geometric programming. As op-
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posed to the m-PAV approach, we have demonstrated through two numer-

ical studies that the GP-based method is computationally fast and easy to

use. It relies on interior-point methods for GPs, which are very robust, in

addition to great efficiency. It does not require any care of the boundary

problem. With a GP solver and parser such as ggplab (available freely

online), it is straightforward to translate a problem of estimating ordered

multinomial probabilities into a standard GP format, and so coding a GP

is easy for users.

We should emphasize that in our numerical studies, we speed up the

m-PAV algorithm by using GP to solve each subproblem involved. Doing

so directly addresses a potential concern that the CPU comparison could be

misleading if the GP code is more highly optimized than the m-PAV code.

It also demonstrates that the estimation problem we consider can be solved

more efficiently by simultaneously optimizing all of the decision variables

rather than by cyclically optimizing subsets of the decision variables, as

kindly pointed out by the Associate Editor. This might be a useful observa-

tion, as the latter approach (sometimes called Dykstra’s cyclical projections

algorithm) is widely used in Statistics.

Finally, we note that the proposed method can be found useful in most

situations where the m-PAV algorithm can be applied, such as applications

in carcinogenicity testing, demography, economics, and epidemiology (Jewell

and van der Laan, 2003).
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