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Abstract

Many procedures have been proposed to compute nonparametric maximum likelihood
estimators (NPMLEs) of survival functions under stochastic ordering constraints. How-
ever, each of them is only applicable to a specific type of stochastic ordering constraint
and censoring, and is often hard to implement. In this paper, we describe a general
and flexible method based on geometric programming for computing the NPMLEs from
right or interval censored data. To this end, we show that the monotonicity properties
of the likelihood function and the stochastic ordering constraints considered in the lit-
erature allow us to reformulate the estimation problem as a geometric program (GP),
a special type of mathematical optimization problem, which can be transformed to a
convex optimization problem, and then solved globally and efficiently. We apply this
GP-based method to real data examples to illustrate its generality in handling differ-
ent types of ordering constraints and censoring. We also conduct simulation studies to
examine its numerical performance for various sample sizes.
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1 Introduction

The problem of estimating survival functions under stochastic ordering constraints arises

naturally in many contexts. For example, one wants to examine the relationship between

severity of cancer status and survival time. A patient with severe cancer is less likely to

survive as long as one with a milder case. The survival functions for patients with different

severity status therefore involve stochastic ordering constraints.

Two types of stochastic ordering have been widely studied in the literature: simple and

uniform stochastic ordering. Let S1, . . . , SN be the survival functions of populations of

interest. The functions are simply stochastically ordered if S1(t) ≤ S2(t) ≤ · · · ≤ SN(t) for

every t (Lehmann 1955), denoted by S1 ¹S S2 ¹S · · · ¹S SN . A stronger version of simple

stochastic ordering is uniform stochastic ordering (e.g., Dykstra, Kochar and Robertson,

1991; Rojo and Samaniego, 1991; Rojo and Samaniego, 1993; Mukerjee, 1996). The functions

S1, . . . , SN are uniformly stochastically ordered if Si(t)
/
Si+1(t) is nondecreasing in t for every

i = 1, . . . , N − 1, denoted by S1 ¹U S2 ¹U · · · ¹U SN . Uniform ordering is equivalent to

ordering in failure rates because S1 ¹U S2 is equivalent to

P
(
T1 > s + t

∣∣T1 > s
) ≤ P

(
T2 > s + t

∣∣T2 > s
)
, for every s, t > 0,

where T1 and T2 are survival times from S1 and S2. An example given in Dykstra, Kochar

and Robertson (1991) illustrates the practical meaning of uniform stochastic ordering, in

which they considered survival times for two different medical treatments. If the better of

the two treatments is administered initially (better in the sense of simple stochastic order-

ing), it might not be the better treatment if patients are examined at a later time point.

However, if the survival times are uniformly ordered, then there is no doubt which treat-

ment is preferred at any time point. Applications of uniform stochastic ordering can be

easily found in reliability studies, clinical trials, and queues and other stochastic models (see

e.g., Ross 1983, Stoyan 1983, and Capéraá 1988).

Without ordering constraints, nonparametric maximum likelihood estimators (NPMLEs)

of survival functions are well studied. For uncensored data, the NPMLEs are simply the

empirical survival functions. For right censored data, they are the Kaplan-Meier product es-

timators (Kaplan and Meier, 1958). For interval censored data, the NPMLEs under “case 1”

interval censoring have a closed form expression derived from generalized isotonic regression
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(Robertson et al. 1988); under “case 2” or the general interval censoring, there is no closed

form available and several algorithms were proposed to compute the NPMLEs numerically

(e.g., Efron, 1967; Wellner and Zhan, 1997; Jongbloed, 1998).

In the presence of stochastic ordering constraints, the NPMLEs are hard to compute gen-

erally. Substantial work in obtaining the constrained NPMLEs has been done for uncensored

or right censored data while the previous work is rather scarce for interval censored data.

For simply stochastically ordered survival functions, Brunk, Franck, Handon, and Hogg

(1966) studied the NPMLEs of two distributions from uncensored samples. Dykstra (1982)

considered the same problem, but with right censored data, by reformulating it as a con-

vex optimization problem, and then solving the Karush-Kuhn-Tucker (KKT) optimality

conditions. His procedures cannot be extended directly to problems with more than two

populations. Feltz and Dykstra (1985) proposed iterative procedures to solve the KKT con-

ditions for the case of multiple populations. Dykstra and Feltz (1989) further considered the

estimation problem with arbitrary simple partial ordering using the Fenchel duality theo-

rem. Præstgaard and Huang (1996) showed that the asymptotic distribution of the NPMLEs

for two sample problems is a limiting process related to the concave majorant of Brownian

motion. The asymptotic distribution of the NPMLEs for more than two samples remains

unknown.

For uniformly stochastically ordered survival functions, Dykstra, Kochar and Robert-

son (1991) considered the NPMLEs and the likelihood ratio testing with right censored

observations from multiple populations. They obtained asymptotic properties including the

consistency of the NPMLEs when the number of events at each time point increases. On

the other hand, several authors pointed out possible inconsistency of the NPMLEs in other

cases. Rojo and Samaniego (1991) and Mukerjee (1996) gave examples of one-sample and

two-sample problems, in which the NPMLEs are inconsistent under uniform stochastic or-

dering. In these cases, as mentioned by Mukerjee (1996), nonparametric maximum likelihood

estimation still provides a way of finding (rough) estimates, just like the method of moments

in the parametric case.

Despite significant progress in constrained estimation of survival functions (for uncen-

sored and right-censored data), obtaining actual estimates still remains a difficult task (Bami

and Mukerjee, 2004). In fact, each of the existing procedures is only applicable to a specific

3



type of stochastic ordering constraint and censoring, and often hard to implement.

In this paper, we describe a new method for computing the NPMLEs of survival functions

with right or interval censored observations from multiple populations, which can readily

handle the two types of stochastic ordering constraints mentioned above. The method can

also handle a mix of these constraints and partial ordering. To this end, we show that the

monotonicity properties of the likelihood function and stochastic ordering constraints allow

us to reformulate the estimation problem as a geometric program (GP), a special type of

mathematical optimization problem, which can be transformed to a convex optimization

problem, and then solved globally and efficiently by using interior-point methods. This

GP-based estimation method has several important computational merits including high

efficiency, great reliability and robustness, as will be discussed in Section 2.

It should be mentioned that GP-based methods had been used to estimate multinomial

probabilities under constraints in several specific problems. Alldredge and Armstrong (1974)

considered the problem of estimating overlap sizes created by interlocking sampling schemes.

Mazumdar and Jefferson (1983) considered estimation of Bernoulli probabilities when sums

of k Bernoulli random variables are observed. Briker, Kortanek, and Xu (1997) considered

constraints on local odds ratios when frequencies are observed along with a rectangular array.

The paper is organized as follows. Section 2 gives a brief introduction to GP. In Sections 3

and 4, we discuss the use of GP with right and interval censored data for finding the NPMLEs

of stochastically ordered survival functions, respectively. To illustrate the application of

our proposed method and examine its performance, we provide data examples as well as

simulation studies. Section 5 concludes the paper.

2 An Overview of Geometric Programming

Here, we give a brief description of geometric programming. We refer the reader to the paper

A Tutorial on Geometric Programming (Boyd, Kim, Vandenberghe and Hassibi, 2007) for

more on geometric programming.

A geometric program is defined through two classes of functions: monomials and posyn-

omials. Let x1, . . . , xn denote n real positive variables, and x = (x1, . . . , xn) be a vector with
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components xi. A real valued function f of x, with the form

f(x) = cxa1
1 xa2

2 · · ·xan
n ,

where c > 0 and ai ∈ R, is called a monomial function, or informally, a monomial (of the

variables x1, . . . , xn). The sum of one or more monomials, namely

f(x) =
K∑

k=1

ckx
a1k
1 xa2k

2 · · · xank
n ,

where each ck is positive, is called a posynomial function or simply a posynomial.

A geometric program (in posynomial form) is an optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m,

gj(x) = 1, j = 1, . . . , p,
(1)

where f0 and fis are posynomials, gjs are monomials, and the optimization variables x1,...,

xn are all positive.

In general, GPs in posynomial form are not convex optimization problems, but they

can be reformulated as convex problems (with convex objective and inequality constraint

functions, and linear equality constraints) by change of variables and transformation of the

objective and constraint functions. We use the logarithms yi = log xi of the original variables

xi, and minimize the logarithm log f0 of the original objective. We also replace the inequality

constraints fi ≤ 1 with log fi ≤ 0, and the equality constraints gj = 1 with log gj = 0, to

obtain the equivalent formulation

minimize log f0(e
y1 , . . . , eyn)

subject to log fi(e
y1 , . . . , eyn) ≤ 0, i = 1, . . . , m,

log gj(e
y1 , . . . , eyn) = 0, j = 1, . . . , p,

(2)

with variables y = (y1, . . . , yn) ∈ Rn. Unlike the original GP, this transformed problem is

convex, in which the equality constraints are linear.

Efficient solution methods for general convex optimization problems are well developed

(Boyd and Vandenberghe, 2004; Nesterov and Nemirovsky, 1994; Norcedal and Wright,

1999; Wright, 1997; Ye, 1997). In particular, interior-point methods are very efficient. As

stated in Boyd et al. (2007), standard interior-point algorithms can solve a GP with 1, 000

variables and 10, 000 constraints within a minute, on a small desktop computer; for sparse
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problems each of whose constraints depends on only a modest number of the variables, far

larger problems can be readily solved. Interior-point methods for GPs require essentially no

algorithm parameter tuning and they require no starting point or initial guess of the optimal

solution. Moreover, they always find the (globally) optimal solution, and when the problem is

infeasible (i.e., the constraints are mutually inconsistent), they provide a certificate showing

that no feasible point exists. We provide a brief description of a primal-dual interior-point

method for GPs as supplemental material on the JCGS website.

Once a problem is formulated as a GP, it can be solved by a solver for convex problems, as

described above. We can recover the solution to the original GP by taking the exponential

of the solution to the equivalent convex problem. Standard solvers for convex problems

require an user to describe the problem in a specific format and do not support flexibility in

problem description. The user needs to transform the problem into a form suitable for the

solvers. It is often convenient to use a parser that automates the transformation from a text

description of the GP into a form suitable for a solver that is already available. Examples

are cvx (Grant, Boyd and Ye, 2005), ggplab (Mutapcic, Koh, Kim and Boyd, 2006),

and YALMIP (Löfberg, 2003), which have a simple interface to the MathWorks’ MATLAB

that recognizes and solves GPs. We will illustrate the merits of GP-based methods in our

numerical studies, using ggplab.

3 The Case of Right Censoring

3.1 The Problem

Consider independent random samples from N populations, with possibly right censored

observations. Let Yik be the failure time of the kth subject from the ith population, where

i = 1, . . . , N , k = 1, . . . , ni, and ni is the sample size for the ith population. We assume

that Yi1, . . . , Yini
are i.i.d. and have density fi(·); and that each Yik is independent of Cik,

the corresponding censoring time. The observed data from the ith population can be given

in the form of (xi1, δi1), . . . , (xini
, δini

), where xik = min(yik, cik), and δik = 1 if yik ≤ cik and

0 otherwise. Let {t1, . . . , tm} be the union of all observed failure times pooled from the N

populations, with t1 < · · · < tm. For the ith population, let dij denote the number of failures

that occur at time tj, and lij denote the number of losses (censored observations) within
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the interval [tj, tj+1). Then, nij =
∑m

r=j(dir + lir) is the number of observations in the ith

population who survive just prior to tj. We further assume those lij losses occur at times

cij
r , r = 1, 2, . . . , lij.

Let Si denote the survival function of the ith population. We assume that S1, . . . , SN

are stochastically ordered in an appropriate sense. Let J ⊂ {1, . . . , N} × {1, . . . , N} denote

the set of pairs of indexes satisfying Si ¹ Si′ , (i, i′) ∈ J. Here, for (i, i′) ∈ J , Si ¹ Si′ means

a stochastic ordering constraint (e.g., simple or uniform) between Si and Si′ .

Given the observed data, the (true) likelihood function (up to multiplicative terms de-

pending on the distributions of censoring times) can be written as

LT (S1, . . . , SN) ∝
N∏

i=1

ni∏

k=1

fi(xik)
δikSi(xik)

1−δik . (3)

Generally, it is infeasible to find the MLE by maximizing (3) over the class of continuous

survival functions. To overcome this difficulty, we follow the previous work (Feltz and Dyk-

stra, 1985; Dykstra, Kochar, and Robertson, 1991) and find the NPMLE by replacing the

likelihood in (3) by an empirical version, where the density fi(x) is replaced by the jump of

the survival functions Si(x−)− Si(x):

L(
S1, . . . , SN

)
=

N∏
i=1

m∏
j=1

{(
Si(tj−)− Si(tj)

)dij
lij∏

r=1

Si(c
ij
r )

}
. (4)

When there are no ordering constraints (i.e., J is empty), to maximize L, it suffices to

restrict attention to survival functions that are piecewise constant with jumps only at the

observed failure times (see, e.g., Turnbull 1976, Wong and Yu 1999, Gentleman and Vandal

2001, Maathuis 2005). Then (4) can be reduced to

L(
S1, . . . , SN

)
=

N∏
i=1

m∏
j=1

(
Si

(
tj−1

)− Si

(
tj

))dij

Si

(
tj

)lij . (5)

Under stochastic ordering constraints, the NPMLEs of survival curves are not necessarily

piecewise constant so that a reduction from L to L is not generally available. An example

is given in Rojo and Samaniego (1991), which involves a survival function that is stochas-

tically smaller than a fixed known survival function. In this example, due to the ordering

constraints, the NPMLE should be strictly monotone over all t; thus the NPMLE is not
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piecewise constant and the maximization should be done over the class of strictly mono-

tone survival functions. However, even in this case or many other cases, the NPMLE over

piecewise constant functions can often provide a good approximation to the true NPMLE,

when the sample size is not small, in the sense that the distance between the two estimates

converges to 0 almost surely (see Appendix A).

As a result, we find the estimates of the survival functions by solving the following

optimization problem:

maximize L(S1, . . . , SN)
subject to Si ¹ Si′ , (i, i′) ∈ J,

Si ∈ C(t1, . . . , tm), i = 1, . . . , N.
(6)

where L(S1, . . . , SN) is given in (5), and C(t1, . . . , tm) denotes the set of functions that are

constant on the intervals [tj, tj+1).

3.2 The GP-Based Method

We describe the GP formulation of (6) below. We define new variables

pij = Si(tj)
/
Si(tj−1), qij = 1− pij, i = 1, . . . , N, j = 1, . . . ,m,

where Si(t0) = 1 for all i = 1, . . . , N . Noting that Si(tj) =
∏j

r=1 pir, the objective of (6)

becomes

L(
S1, . . . , SN

)
=

N∏
i=1

m∏
j=1

q
dij

ij p
lij
ij

∏
r<j

p
dij+lij
ir .

In terms of the optimization variables pijs and qijs, (6) is equivalent to

minimize
∏N

i=1

∏m
j=1 q

−dij

ij p
−lij
ij

∏
r<j p

−dij−lij
ir

subject to pij + qij = 1, i = 1, . . . , N, j = 1, . . . , m,
fk

(
p11, . . . , pNm

) ≤ 1, k = 1, . . . |J |,
(7)

where fks correspond to the constraint functions expressed in terms of pijs. Here |J | denotes

the cardinality of J , the index set of order constraints introduced in Section 3.1.

The objective of (7) is a monomial of pijs and qijs. As will be shown later in this

section, the inequality constraint functions fks are posynomials of the variables. In a GP,

the only equality constraints allowed involve monomials. Since the equality constraints of
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(7) are posynomial equalities, (7) is not a GP. We replace those posynomial equalities with

inequalities to obtain the GP

minimize
∏N

i=1

∏m
j=1 q

−dij

ij p
−lij
ij

∏
r<j p

−dij−lij
ir

subject to pij + qij ≤ 1, i = 1, . . . , N, j = 1, . . . , m,
fk

(
p11, . . . , pNm

) ≤ 1, k = 1, . . . |J |.
(8)

We now establish the equivalence between (7) and (8). Since the posynomials pij + qij

are monotone increasing in the variables, the objective is decreasing in the variables, and qijs

do not appear in any of the posynomial inequality constraint functions fk, we can see that

at the optimal point, the inequality constraints pij + qij ≤ 1 must be tight. In other words,

for any pij, qij, if at least one of the inequalities pij + qij < 1 is strict, then they cannot be

optimal since p̂ij, q̂ij with p̂ij = pij and q̂ij = qij + (1− pij − qij) are feasible for (8) but

N∏
i=1

m∏
j=1

q
−dij

ij p
−lij
ij

∏
r<j

p
−dij−lij
ir >

N∏
i=1

m∏
j=1

q̂
−dij

ij p̂
−lij
ij

∏
r<j

p̂
−dij−lij
ir .

In summary, we can solve the original problem (6), through the tractable GP (8).

We show that the stochastic ordering constraints widely studied in the literature are

compatible with GP.

• Simple ordering. The constraint S1 ¹S · · · ¹S SN can be written as Si(tj) < Si+1(tj)

for i = 1, . . . , N − 1 and j = 1, . . . , m. In terms of pijs, the ordering constraint can

be expressed as
∏j

r=1 pir ≤
∏j

r=1 pi+1,r, or equivalently as the monomial inequality
∏j

r=1 pirp
−1
i+1,r ≤ 1, for i = 1, . . . , N − 1, and j = 1, . . . ,m.

• Uniform ordering. The constraint S1 ¹U · · · ¹U SN can be written as Si(tj)
/
Si+1(tj) ≤

Si(tj+1)
/
Si+1(tj+1), for i = 1, . . . , N − 1 and j = 1, . . . , m − 1. Again with pijs, the

ordering constraint can be expressed as pij ≤ pi+1,j, or equivalently the monomial

inequality pijp
−1
i+1,j ≤ 1, for i = 1, . . . , N − 1 and j = 1, . . . , m− 1.

Besides the above two types of ordering constraints, the GP-based method can handle

any GP-compatible constraints, such as upper or lower bounds on the survival function at

some time points and different types of ordering constraints in multiple sample problems.
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3.3 Examples

We first illustrate the generality and flexibility of our GP-based method with examples of

right-censored data from the previous literature. We applied it to the oropharynx cancer

data in Kalbfleisch and Prentice (1980). We used ggplab (Mutapcic et al., 2006) to find

the NPMLEs on a 1.80GHz Pentium IV computer. The ggplab codes are available from

the JCGS website, which can be readily modified to handle similar problems.

The data set involves a large clinical trial carried out by the Radiation Therapy Oncology

Group in the United States, where patients’ survival (or censoring) times were recorded in

days. It also contains variables that are potentially related to the survival time, including

sex, T staging and N staging. Here, T and N staging measure the extent of the tumor at

the primary site and at regional lymph nodes, respectively. Specifically, T = 1 indicates a

small primary tumor, T = 4 indicates a massive tumor, and T = 2 and T = 3 indicate two

intermediate sizes. Similarly, N = 0 indicates no clinical evidence of lymph node metastasis

and N = 1, 2, 3 indicate increasing magnitudes of lymph node deterioration. Following Feltz

and Dykstra (1985) and (1989), we only used a small part of the data in our analysis, where

all female patients and patients with (T,N) = (1, 0), (1, 1), (2, 0) and (2, 1) were excluded.

Simple stochastic ordering

Our first example considers the problem from Feltz and Dykstra (1985), which assumes

simple stochastic ordering among the groups (T,N) = (3, 1), (3, 2), and (3, 3), denoted as

population 1, 2 and 3, respectively. Due to the nature of the disease, it would be reasonable

to have the ordering with respect to lymphatic involvement: S3 ¹S S2 ¹S S1. However, the

unrestricted NPMLEs (Kaplan-Meier estimates) of survival functions, given in Figure 1(a),

reveal some reverse ordering between S1 and S2 at times 347 and 1092, and also between S2

and S3 at time 105.

The NPMLEs subject to the above constraint obtained by the GP method are shown in

Figure 1(b). The duality gap is set to 10−6, which means that the maximum likelihood value

we found is within the gap 10−6 from the true value. In this example, the total number of

observed failure times is m = 41. The number of Newton steps required to solve the GP is

44 and the CPU time is about 1 second.

Although we solved the same optimization problem as in Feltz and Dykstra (1985), our
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estimates from the GP method show obvious differences from those of Feltz and Dykstra

(1985). First, the GP estimates provide a higher likelihood value than the Feltz-Dykstra

estimates; that is, −136.91 versus −137.19. Secondly, the GP estimates are closer to the

Kaplan-Meier estimates than the Feltz-Dykstra estimates. For example, the GP estimate

of S1(929) is 0.3845, which is closer to the Kaplan-Meier estimate 0.364 than the estimate

0.4881 by Feltz and Dykstra. The same phenomenon can also be observed at several other

time points, as shown in Figure 1(c) which plots the three estimates of S2 obtained by the

Kaplan-Meier method, the Feltz-Dykstra method, and the GP method.

Partial stochastic ordering

The second example is from Dykstra and Feltz (1989), which involves partial ordering among

groups (T,N) = (3, 0), (3, 3), (4, 0), and (4, 3), denoted by population 1 ∼ 4, respectively.

For the same T stage groups, the survival curve of N = 3 would be expected to be smaller

than that of N = 0. Similarly, for the same N stage groups, the survival curve of T = 4

would be expected to be smaller than that of T = 3. Hence, S1, S2, S3 and S4 would satisfy

S4 ¹S S2 ¹S S1, and S4 ¹S S3 ¹S S1. Figure 2(a) shows the unrestricted NPMLEs. As

pointed out in Dykstra and Feltz (1989), the above order assumptions are violated at various

points.

Using the GP formulation discussed in Section 3.2, the NPMLEs in this example are the

solution to the GP

minimize
4∏

i=1

75∏
j=1

q
−dij

ij p
−lij
ij

j∏
r=1

p−dir−lir
ir

subject to pij + qij ≤ 1, i = 1, 2, 3, 4, j = 1, . . . , 75,
j∏

r=1

p4rp
−1
3r ≤ 1,

j∏
r=1

p2rp
−1
1r ≤ 1, j = 1, . . . , 75,

j∏
r=1

p3rp
−1
1r ≤ 1,

j∏
r=1

p4rp
−1
2r ≤ 1, j = 1, . . . , 75.

It took around 2.1 seconds and 49 Newton steps to solve this GP.

Figure 2(b) plots the estimated survival functions via the GP method and they are similar

to the results of Dykstra and Feltz (1989).
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Mix of two types of stochastic ordering

To further illustrate the flexibility in ordering constraints that the GP method can handle,

we consider both simple and uniform stochastic ordering constraints simultaneously, using

the same data from Dykstra and Feltz (1989). We assume the uniform stochastic ordering

between the first, (T, N) = (3, 0), and the third population, (T, N) = (4, 0), but assume

the simple stochastic ordering between the third (T, N) = (4, 0) and the fourth population

(T, N) = (4, 3); that is, S4 ¹S S3 ¹U S1.

In this example, the NPMLEs of S1, S3 and S4 are the solution to the following GP:

minimize
∏

i=1,3,4

49∏
j=1

q
−dij

ij p
−lij
ij

j∏
r=1

p−dir−lir
ir

subject to pij + qij ≤ 1, i = 1, 3, 4, j = 1, . . . , 49,
j∏

r=1

p4rp
−1
3r ≤ 1, p3jp

−1
1j ≤ 1, j = 1, . . . , 49.

It took 1.8 seconds and 49 Newton iterations to solve this GP.

Figure 2(c) plots the survival curves estimated by the GP method. The figure illustrates

the difference between simple and uniform stochastic ordering. The difference between the

NPMLEs of S1(t) and S3(t) (uniform stochastic ordering) increases as t increases, whereas

the difference between S3(t) and S4(t) (simple stochastic ordering) does not.

3.4 Numerical Performance

We conducted two simulation studies to examine the numerical performance of the GP

method.

We first compare the computing time of the GP method to that of the algorithm by

Feltz and Dykstra (1985) in estimating simply stochastically ordered survival functions,

to shed light on the potential gain in computational efficiency. We set the sample size

n = 100, 200, 300 and 400 and for each size, we randomly generated 100 date sets. Each data

set involves four populations with equal sample size n/4 whose survival times were generated

from exponential distributions with means 10, 20, 30 and 40.

Figure 3(a) plots the mean CPU time (±2 s.d.) versus sample size for the two methods.

Clearly, our GP method is much faster than the Feltz-Dykstra method, and the difference
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becomes larger when n gets larger. This is because for N -sample problems (N > 2), the

Feltz-Dykstra method iteratively applies the pairwise algorithm designed for two-sample

problems by Dykstra (1982) until it converges. The algorithm for two samples solves a

number of nonlinear equations that is proportional to the number of violations of order

constraints. Due to its large number of iterations, the Feltz-Dykstra method needs to solve

many nonlinear equations iteratively, especially for large N or n. In contrast, the GP method

only needs to solve a single optimization problem.

The sizes of the problems considered above are modest. In our second experiment, to

study the performance of the GP method for relatively large problems, we chose n to be

200, 400, 600, 800, and 1000. Again, 100 data sets were generated for each n. Each data

set involves two populations with equal sample size n/2 whose survival times were generated

from exponential distributions with means 20 and 50. Thus, the two survival curves are

stochastically ordered, both simply and uniformly.

We used the GP method to compute the NPMLEs under simple and uniform stochastic

ordering constraints, respectively. Figure 3(b) shows the mean CPU time (±2 s.d.) for each

sample size. We can see that the computing speed for estimating simply ordered survival

functions is much slower and the time grows much faster than that for uniformly ordered

survival functions. This is not surprising since uniform ordering yields a sparse GP while

simple ordering yields a much less sparse GP.

Before we end this section, we should mention that in our simulation setting, we did

not consider right censored observations. In fact, right censoring reduces the number of

optimization variables as well as the number of constraints (recall in our GP formulation,

m is the number of unique failure times observed). Thus, the setting without censored

observations is, in general, the worst case, in terms of computing complexity.

4 The Case of Interval Censoring

This section shows how the GP method can be used to estimate survival functions under

various constraints from interval censored data. Such data arise when a failure time Y

can not be observed, but can only be determined to be within an interval (L,R) obtained

from a sequence of examination times. There are several types of interval censoring data in
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accordance with the number of observation times per individual: “case k” interval censoring

refers to the case with k observation times per individual (Groeneboom and Wellner, 1992;

Wellner, 1995). In this section, we focus on estimation of survival functions with “case 1”

interval censored data, and give a brief discussion about “case 2” data.

4.1 The Problem and the GP-Based Method

Consider “case 1” interval censored data from N populations. Let Yik be the unobserved

failure time and Cik be the examination (or observation) time of the kth subject from the ith

population, for i = 1, . . . , N and k = 1, . . . , ni. Let Si(t) be the survival function of Yik and

gi(c) be the density of Cik. We assume all Yiks and Ciks are independent. The only knowledge

about the failure time Yik is whether it has occurred before Cik or not. So the observed data

are of the form {(cik, δik), i = 1, . . . , N ; k = 1, . . . , ni}, where δik = I
(
yik ≤ cik

)
, and I(·) is

the indicator function.

We further let {t1, . . . , tm} be the unique ordered observations of {0, cik, i = 1, . . . , N ; k =

1, . . . , ni}. Let nij =
∑ni

k=1 I(cik = tj) be the number of subjects observed at tj in pop-

ulation i, and rij =
∑ni

k=1 δikI(cik = tj) be the number of subjects who have failed be-

fore time tj among the nij subjects, for i = 1, 2, . . . , N and j = 1, . . . , m. Noting that

rij ∼ Binomial
(
nij, 1− Si

(
tj

))
, the likelihood function (up to a normalizing constant) is

L(
S1, S2, . . . , SN

)
=

N∏
i=1

m∏
j=1

[
Si

(
tj

)]nij−rij
[
1− Si

(
tj

)]rij
[
gi

(
tj

)]nij , (9)

where Si

(
t1

) ≥ Si

(
t2

) ≥ · · · ≥ Si

(
tm

)
for each i. Again, (9) depends on Sis only through

their values at the observation times. So we follow the convention that the NPMLEs are

assumed to be piecewise constant with jumps only at tjs. The NPMLEs of Sis (without

any other order constraints) can be computed by solving a generalized isotonic regression

problem via the pool-adjacent-violators algorithm (Robertson, et al. 1988; Sun 2006).

As in the case of right censoring, the maximization of the likelihood (9) over piecewise

constant survival functions can be formulated into a GP. Let pij = 1−Si(tj) and qij = Si(tj).

Following a similar argument given in Section 3.2, we can again show that the equality

constraints pij + qij = 1 can be relaxed to pij + qij ≤ 1 so that we only need to solve the
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following GP to compute the NPMLEs:

maximize
∏N

i=1

∏m
j=1 p

rij

ij q
nij−rij

ij

subject to qi1 ≥ qi2 ≥ · · · ≥ qim, for i = 1, 2, . . . , N,
pij + qij ≤ 1, for i = 1, 2, . . . , N, j = 1, 2, . . . , m.

(10)

The advantage of our GP-based method, again, lies in its flexibility of handling a wide

class of GP-compatible constraints on survival functions. For example, the simple stochastic

ordering constraint between populations i and i′, Si ¹S Si′ , can be written as qijq
−1
i′j ≤ 1

for j = 1, . . . , m; and the uniform stochastic ordering constraint Si ¹U Si′ can be writ-

ten as qijqi′,j+1q
−1
i′j q−1

i,j+1 ≤ 1 for j = 1, . . . , m − 1. Other GP-feasible examples include

αij ≤ Si

(
tj+1

)/
Si

(
tj

) ≤ βij (i.e., αij ≤ qi,j+1q
−1
ij ≤ βij) for constants αijs and βijs, and

Si

(
tj+1

)/
Si

(
tj

) ≤ Si

(
tj

)/
Si

(
tj−1

)
(i.e., qi,j−1q

−2
ij qi,j+1 ≤ 1) for some i ∈ {1, . . . , N} and

j ∈ {1, . . . , m}. All the above examples involve monomials of the optimization variables qijs,

but not pijs so that the relaxation from pij + qij = 1 to pij + qij ≤ 1 can be done as before.

To summarize, the NPMLEs of the survival functions under GP-compatible constraints

can be obtained by solving the following GP,

maximize
∏N

i=1

∏m
j=1 p

rij

ij q
nij−rij

ij

subject to qi1 ≥ qi2 ≥ · · · ≥ qim, for i = 1, 2, . . . , N,
pij + qij ≤ 1, for i = 1, 2, . . . , N, j = 1, 2, . . . , m,
fk(q11, . . . , qNm) ≤ 1, k = 1, 2, . . . , K,

(11)

where fks correspond to the constraint functions expressed in terms of qijs, and K denotes

the number of such constraints. The computational cost of (11) is not much different from

that of the unconstrained problem (10). In contrast, the classical isotonic regression method

can only handle (10).

We now discuss the use of GP with “case 2” interval censored data briefly. Unlike

“case 1” interval censoring, computing the NPMLEs from “case 2” data is quite involved

even without imposing any order constraints among survival functions, for which several

estimation approaches have been proposed in the literature. Among the earliest was the

expectation-maximization (EM) algorithm proposed by Efron (1967). The maximization

step in the EM algorithm estimates multinomial probabilities, which has been shown to be

equivalent to solving a GP (Mazumdar and Jefferson, 1983). Although it is generally slower

than the iterative convex minorant (ICM) algorithm by Jongbloed (1998) and a hybrid

algorithm of ICM and EM by Wellner and Zhan (1997), the EM algorithm, when combined
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with GP in the maximization step, can allow GP-compatible constraints easily, whereas the

other algorithms do not have such flexibility. We omit details for brevity.

4.2 An Example

We consider the lung tumor data given in Hoel and Walberg (1972) and Section 1.2.1 in

Sun (2006). The data consist of 144 male mice from two treatment groups, conventional

environment (population 1) and germ free environment (population 2). For each animal,

the death time and the existence of lung tumor were recorded when it was found dead. So

the data are “case 1” interval censored. It is natural to assume the time to lung tumor

of population 1 is stochastically earlier than that of population 2, that is S1(t) ≤ S2(t) for

every t. Our goal is to obtain the NPMLEs of S1 and S2 under the simple stochastic ordering

constraint.

We applied the proposed method and plotted the estimated survival functions with and

without the ordering constraint in Figure 4(a) and Figure 4(b). We can see that they show

obvious difference; violations to the constraint of simple stochastic ordering disappear when

it was imposed. To our best knowledge, no existing method can compute the constrained

NPMLEs from interval censored data.

5 Discussion

In this paper, we have described the GP-based approach for estimating survival functions

under stochastic ordering constraints. We have illustrated the proposed approach with sev-

eral data examples and simulation studies. We have shown that, as opposed to the existing

approaches in the literature, the GP-based approach is flexible and general; it can be used

with right-censored data or case 1 and 2 interval-censored data; it can readily handle the

simple and uniform ordering constraints and moreover can handle a mix of the two con-

straints. Another merit is that it can rely on interior-point methods for GPs, which are

very robust, in addition to being fast. Finally, it can rely on a GP solver and parser such as

ggplab, which makes straightforward the job of translating the problem of survival function

estimation into a standard GP format.

Finally, we mention that for interval censoring, the GP formulations for case 1 and 2
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data do not work for the general mixed case. Hence, it would be of interest to investigate it

as a topic of future research.
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A Piecewise constant approximation to the NPMLE

In this section, we show that the NPMLE over the family of piecewise constant functions

( say S
pc

m ) provides a good approximation to the true NPMLE (say Sm) asymptotically.

We assume that both survival times and censoring times of each population have positive

densities on a compact set so that the maximum space between two nearest observations,

maxj |tj+1 − tj|, converges to 0 a.s., as m increases.

Let C be the space of all survival functions S = (S1, S2, . . . , SN), and C(t1, t2, . . . , tm) be

the space of piecewise constant survival functions with break points at t1, t2, . . . , tm. Here,

we do not consider trivial survival functions which have all the mass at a single point. We

equip these spaces C and C(t1, t2, . . . , tm
)

with the L∞ metric defined as

d
(
S,T

)
=

N∑
i=1

sup
x
|Si(x)− Ti(x)|.

We make two more assumptions on the likelihood function and the NPMLE. We assume

that the NPMLE, Sm, is unique on the given space C. As in previous literature (Feltz and

Dykstra, 1985; Dykstra, Kochar, and Robertson, 1991), we assume the likelihood function

is discrete only on observation points in the generalized maximum likelihood framework

developed by Kiefer and Wolfowitz (1956). Thus, the likelihood function to be maximized

has the form (4).

We will establish the following:

(i) The likelihood function (4) is continuous in S.

(ii) As m increases,

d
(
Sm, C(t1, t2, . . . , tm

))
= min

T∈C(t1,t2,...,tm)
d

(
Sm,T

)

converges to zero almost surely.

These two results show that d
(
S

pc

m ,Sm

)
converges to 0 a.s., as m increases. ¿From (ii), we

can take a sequence Tm in C(t1, t2, . . . , tm) which converges to Sm. By the continuity of the

likelihood function, their likelihood values also converge to that of Sm. Thus, if d
(
S

pc

m ,Sm

)

does not converge to 0 a.s., the likelihood value of S
pc

m becomes smaller than that of Tm for
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sufficiently large m. It contradicts the definition of S
pc

m as the maximizer of the likelihood

over C(t1, t2, . . . , tm).

We first show that the likelihood function is continuous in S. Let

θ = max
i,j

max

{(
Si(tj−)− Si(tj)

)dij
lij∏

r=1

Si(c
ij
r ),

(
Ti(tj−)− Ti(tj)

)dij
lij∏

r=1

Ti(c
ij
r )

}
,

which is smaller than 1 for non-trivial survival functions S. Then, we have

∣∣∣L(S
)− L(T

)∣∣∣

=

∣∣∣∣
N∏

i=1

m∏
j=1

{(
Si(tj−)− Si(tj)

)dij
lij∏

r=1

Si(c
ij
r )

}
−

N∏
i=1

m∏
j=1

{(
Ti(tj−)− Ti(tj)

)dij
lij∏

r=1

Ti(c
ij
r )

}∣∣∣∣

≤ θNm−1

N∑
i=1

m∑
j=1

∣∣∣∣
(
Si(tj−)− Si(tj)

)dij
lij∏

r=1

Si(c
ij
r )−

(
Ti(tj−)− Ti(tj)

)dij
lij∏

r=1

Ti(c
ij
r )

∣∣∣∣

≤ θNm−1 · 3m · d(
S,T

)

≤ d
(
S,T

)
,

for sufficiently large m. Thus, L(
S
)

is continuous in S.

We now show that

lim
m→∞

d
(
Sm, C(t1, t2, . . . , tm

)
) = 0 a.s.

Recall that Sm =
(
S1,m, S2,m, . . . , SN,m

)
can have discontinuity points only at t1, t2, . . . , tm.

We define a function Tm =
(
T1,m, T2,m, . . . , TN,m

)
in C(t1, t2, . . . , tm) as

Ti,m(t) = Si,m(tj), t ∈ [tj, tj+1

)
,

for j = 0, 1, . . . , m with t0 = 0 and tm+1 = ∞. Then, we know that

d
(
Sm, C(t1, t2, . . . , tm)

) ≤ d
(
Sm,Tm

) ≤ max
i

m
max
j=1

∣∣∣Si,m(tj)− Si,m(tj+1−)
∣∣∣, (12)

where Si,m(tm+1−) is set to be 0 for every i. The rightmost quantity in (12) converges to 0

a.s., as m increases, which can be seen from the fact that S∞ only has discontinuous points

at t1, . . . , tm and maxj

∣∣tj+1 − tj
∣∣ decreases to 0 a.s.
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Figure 1: Results for right censored data from Feltz and Dykstra (1985): (a) the Kaplan-
Meier estimates (NPMLEs without ordering constraints); (b) the GP estimates under simple
stochastic ordering, where S1 is simply larger than S2, and S2 is simply larger than S3; (c)
the estimated S2 by the Kaplan-Meier method (NPMLE without order constraints), and by
the Feltz-Dykstra method and the GP method under simple stochastic ordering.
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Figure 2: Results for right censored data from Dykstra and Feltz (1989): (a) the Kaplan-
Meier estimates (NPMLEs without ordering constraints) of the four populations; (b) the GP
estimates under partial simple stochastic ordering, where S1 is simply larger than both S2

and S3 that are simply larger than S4; (c) the GP estimates under mixed simple and uniform
stochastic ordering constraints, where S1 is uniformly larger than S3, and S3 is simply larger
than S4.
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Figure 3: Simulation Results: (a) comparison of computing time: “◦” represents the Feltz-
Dykstra method and • represents the GP method; (b) scalability of the GP method: “◦” is
for the case of simple stochastic ordering and “•” for the case of uniform stochastic ordering.
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Figure 4: Results for “case 1” interval censored data: (a) unconstrained estimates of survival
functions of time to lung tumor on set; (b) constrained estimates of survival functions of
time to lung tumor on set.
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