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AbstractRanked set sampling (RSS) is an established cost-e�ective sampling method. In RSS,the variance of observations in each ranked set plays an important role in �nding anoptimal design for unbalanced RSS and in inferring the population mean. The empiricalestimator (i.e., the sample variance in a given ranked set) is most commonly used forestimating the variance in the literature. However, the empirical estimator does notuse the information in the entire data over di�erent ranks. Further, it is highly variablewhen the sample size is not large enough, as is typical in RSS applications. In thispaper, we propose a plug-in estimator for the variance of each stratum, which is moree�cient than the empirical one. The estimator uses a result in order statistics whichcharacterizes the cumulative distribution function (CDF) of the rth order statistics
F(r)(x) as a function of the population CDF F (x). We analytically prove the asymptoticnormality of the proposed estimator. We further apply it to estimate the standard errorof the RSS mean estimator. Both our simulation and empirical study show that ourestimators consistently outperform existing methods.Keywords: cumulative distribution function, judgment post-strati�cation, orderstatistics, plug-in estimator, population mean estimator, variance estimation.1 IntroductionRanked set sampling (RSS) is an established cost-e�ective sampling method. It is useful insituations where the characteristic of interest is expensive to measure, but sampling unitscan be easily gathered and ranked by some means not requiring quanti�cation. Theoreticaldevelopment shows that the RSS estimator of population mean is at least as e�cient as theestimator from a simple random sample (SRS) of equal sample size. We refer readers to Chen
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et al. (2003) and the references therein for an overview of RSS. For recent developmentsin RSS, including judement poststrati�cation that is a variation of RSS, please see, e.g.,MacEachern et al. (2004), Wang et al. (2006), Óztúrk (2008), etc.For RSS experiments, the variance of observations in each ranked set (or stratum) playsan important role. In designing unbalanced RSS, the allocation of units to di�erent stratais a key issue to get an e�cient estimate of the population mean. The Neyman allocationassigns a given number of units to each stratum to minimize the variance of the RSS meanestimator (say µ̂). To be speci�c, it assigns nr units to the rth stratum, where nr ∝ σ(r)and σ2
(r) is the variance of the rth stratum. Also note that the standard error (SE) of µ̂ is afunction of the σ2

(r)'s, which is needed to make statistical inference about population mean.Thus, the estimation of the σ2
(r)'s is the �rst but a very important step for both problems.The most commonly used estimator of σ2

(r) is simply the sample variance of observationsin the rth stratum. However, this empirical estimator of σ2
(r) only relies on the units fromthe rth stratum, and does not utilize the information from the entire data set over di�erentstrata. Consequently, it has a large variance when the sample size is small, as is typical inmany RSS applications that have cost constraints.In this paper, we propose a new estimator of σ2

(r) that is more e�cient than the empiricalestimator. The proposed estimator is motivated by a well-known result in order statistics,which characterizes the cumulative distribution function (CDF) F(r)(x) as a function of thepopulation CDF F (x). Thus, once we can estimate the population CDF F (x) reliably, F(r)(x)and its variance σ2
(r) can be estimated from the relationship between F(r)(x) and F (x).The remainder of the paper is organized as follows. In Section 2, we introduce newestimators for F(r)(x) and σ2

(r), which we refer to as plug-in estimators. We analyticallyderive the asymptotic properties for the proposed estimators and numerically examine theirperformance. For symmetric distributions, to achieve better performance, we also propose amodi�ed plug-in estimator. In Section 3, we apply the new estimators to construct the SE of2



the RSS mean estimator µ̂, in which we consider both binary and non-binary data. Section4 illustrates our estimators using tree data from Platt et al. (1988). Section 5 concludes thepaper by a brief discussion.2 Estimating stratum variance σ2
(r)2.1 Plug-in estimatorsConsider a ranked set sample (RSS) of size N from a population with CDF F (x):

X(1)1, . . . , X(1)n1
, · · · , X(H)1, . . . , X(H)nH

,where H is the number of ranked sets, nr is the number of observations in the stratum ofrank r and N =
∑H

r=1 nr. We assume that judgment ranking is perfect. Thus, X(r)i is the
rth smallest among its H comparison units, and its CDF, denoted by F(r)(x), is that of the
rth order statistic among H samples.Our new estimators of the CDF F(r)(x) and the corresponding variance σ2

(r) for stratum
r are motivated by the fact that F(r)(x) is a function of F (x). That is,

F(r)(x) = IF (x)(r, H − r + 1), (1)where Ip(a, b) is the incomplete beta function
Ip(a, b) =

1

Beta(a, b)

∫ p

0

ta−1(1 − t)b−1dt, and Beta(a, b) =

∫ 1

0

ta−1(1 − t)b−1dt.Two special cases of the identity (1) are those with r = 1 and H . For r = 1,
F(1)(x) = IF (x)(1, H) =

1

Beta(1, H)

∫ F (x)

0

(1 − t)H−1dt = 1 − {1 − F (x)}H ,and for r = H ,
F(H)(x) = IF (x)(H, 1) =

1

Beta(H, 1)

∫ F (x)

0

tH−1dt = F (x)H .3



Given an estimate of F (x) (say F̂ ), we can propose a new plug-in estimator of F(r)(x)using (1), namely,
F̂PI

(r)(x) = IF̂ (x)(r, H − r + 1).In RSS studies, estimation of the population CDF is well established in the literature. Tolist a few, Stokes and Sager (1988) considered the empirical CDF from RSS data. Kvam andSamaniego (1994) studied a nonparametric maximum likelihood estimator and proposed anEM algorithm to compute it. A kernel estimator was studied by Chen (1999). More recently,Óztúrk (2007) has proposed an estimator using the stochastic ordering among the F(r)(x)'s,which is robust to ranking error.From the estimator F̂PI
(r)(x), we can further de�ne a plug-in estimator V̂ PI

(r) for the varianceof the rth stratum, σ2
(r). Let µ̂(r) be an estimate of the mean of the rth stratum. In the casewhen X, the variable of interest, is discrete and has a support X , the plug-in estimator canbe given by

V̂ PI
(r) =

∑

x∈X

(x − µ̂(r))
2
[
F̂PI

(r)(x + 1) − F̂PI
(r)(x)

]
. (2)In the case when X is continuous, we have

V̂ PI
(r) =

∫ (
x − µ̂(r)

)2
f̂PI

(r)(x) dx, (3)where
f̂PI

(r)(x) =
1

Beta(r, H − r + 1)

[
F̂ (x)

]r−1 [
1 − F̂ (x)

]H−r

dF̂ (x).In (2) or (3), we choose µ̂(r) to be the isotonic regression estimator, which is given by
µ̂(r) = max

s≤r
min
t≥r

t∑

g=s

ngȲ(g)

nst

, nst =
t∑

g=s

ng.We could choose µ̂(r) to be the sample mean Ȳ(r) of the rth stratum. However, based on ournumerical experience, we �nd that using the isotonic version has better performance. This4



is not surprising, since the isotonic estimator imposes the built-in ordering in the means ofthe strata.Finally, we remark that both F̂PI
(r)(x) and V̂ PI

(r) only require estimation of the populationCDF, which is not necessarily from a RSS sample. This provides a great bene�t in problemsof optimally designing unbalanced RSS experiments. We can easily obtain our estimatesand the optimal allocation for an unbalanced design from simple random samples, which wecommonly encounter in the previous literature.2.2 AsymptoticsHere we obtain the asymptotic properties of the plug-in estimators, F̂PI
(r)(x) and V̂ PI

(r) . Inwhat follows, we use F̂(r)n and V̂(r)n to emphasize that they depend on the sample sizes
n = (n1, . . . , nH) and N =

∑H
r=1 nr.We assume that F̂n(x), the estimate of the population CDF, satis�es the central limittheorem (CLT). That is, for �xed x,

√
N

[
F̂n(x) − F (x)

]converges in distribution to a Gaussian random variable σ(x)Z, where Z is a standardnormal random variable. This assumption, which we refer to as (A), is true for most ofexisting estimators of F (x) including those mentioned in Section 2.1. For example, considerthe empirical estimator proposed by Stokes and Sager (1988),
F̂ SS

n (x) =
1

H

H∑

r=1

F̂ E
(r)n(x),where

F̂ E
(r)n(x) =

1

nr

nr∑

i=1

I
(
X(r)i ≤ x

)
, r = 1, . . . , Hand I(·) is the indicator function. For �xed x, we know from the functional CLT that

√
nr

{
F̂ E

(r)n(x) − F(r)(x)
}

=
√

nr

{
1

nr

nr∑

i=1

[
I(X(r)i ≤ x) − F(r)(x)

]
} (4)5



converges in distribution to a normal distribution with mean 0 and variance F(r)(x)(1 −

F(r)(x)). By summing up the asymptotic results of each F̂ E
(r)n(x) in (4), we have

√
N

{
F̂ SS

n (x) − F (x)
}

=
1

H

H∑

r=1

√
N

nr

√
nr

{
1

nr

∑

i

[
I(x(r)i ≤ x) − F(r)(x)

]
}

.

→ 1

H

H∑

r=1

(1/
√

qr)
√

F(r)(x)
[
1 − F(r)(x)

]
Zr,where qr = nr/N and Z1, . . . , ZH are IID from the standard normal distribution. Thus,

√
N

[
F̂ SS

n (x) − F (x)
]converges in distribution to a normal random variable with mean 0 and variance

σ2(x) =
1

H2

H∑

r=1

1

qr
F(r)(x)

[
1 − F(r)(x)

]
. (5)We now prove the central limit theorem for F̂PI

(r)n(x), which further gives the consistencyof F̂PI
(r)n(x) and V̂ PI

(r)n as well. Let the function Gr(F (x)) be
Gr(F (x)) = IF (x)(r, H − r + 1).Then, for �xed x,

F̂PI
(r)n(x) = Gr(F̂n(x)),and

√
nrUr(x) ≡ √

nr

[
Gr(F̂n(x)) − Gr(F (x))

]

≈
√

nr

N
G′

r(F (x))
√

N
[
F̂n(x) − F (x)

]
,where

G
′
r(F (x)) =

1

Beta(r, H − r + 1)
F (x)r−1 [1 − F (x)]H−r .6



Thus, under (A), √nrUr(x) converges to a Gaussian random variable with mean 0 andvariance
τ 2
r = qrG

′
r(F (x))2σ2(x),where σ2(x) is de�ned in (A). Here, σ2(x) depends on the choice of F̂n(x). For example, if

F̂n(x) = F̂ SS
n (x), it is equal to that in (5). Finally, noting that µ̂(r) is a consistent estimatorof µ(r), we have
V̂ PI

(r)n − V(r) =

∫
(x − µ(r))

2d
{
F̂PI

(r)n(x) − F(r)(x)
}
−

(
µ̂(r) − µ(r)

)2
,which converges to 0 in probability, if E|X(r)|2+δ is �nite for some δ > 0.2.3 Numerical StudiesIn this section, we implement numerical studies to investigate the e�ciency of the proposedplug-in estimator of σ2

(r) under various settings. We generate balanced RSS samples fromsix di�erent distributions: standard normal, uniform (0,1), gamma with shape parameter
5 and scale parameter 1, standard exponential and standard log-normal as in MacEachernet al. (2002) and Wang et al. (2008), plus Poisson with mean 5. We set the number ofranked sets H = 2, 3, 4, 5, 10, and the number of units in each stratum m = 1, 2, 3, 4, 5, 20.Under each setting, the relative e�ciency (RE) is estimated from 20,000 replicates. Here,relative e�ciency (RE) is de�ned as the ratio of the mean squared errors (MSE) between twoestimators. We use the Stokes and Sager estimator F̂ SS of the population CDF to calculatethe estimators V̂ PI

(r) for di�rent strata.Figures 1-3 report the simulated relative e�ciency of V̂ PI
(r) to s2

(r), the sample variance ofthe rth stratum. Here, we only report results for normal, lognormal and Poisson data, dueto the limit of space. The REs of V̂ PI
(r) to s2

(r) are larger than 1 in all the cases we consider,meaning that V̂ PI
(r) performs uniformly better than s2

(r). In many cases, the values of REsare higher than 2, and could be much higher as in the lognormal distribution. This means7



substantial improvement could be obtained. Among the six distributions, the REs for thePoisson case are relatively small, compared to the other �ve continuous distributions. Also,for the continuous distributions, we �nd that the REs for r = 1 (the smallest rank) among
H strata tend to be particularly higher than those for the other ranks when the sample size
m of each stratum is small. Overall, it is hard to �nd a relationship between RE and H orbetween RE and m while �xing one of them.

1

1

1

1
1

H= 2

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2 2 2 2 2

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

2 5 10 20

1

1

1

1
1

H= 3

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)
2 2

2

2

2

3 3 3 3 31.
5

2.
5

3.
5

4.
5

2 5 10 20

1

1

1

1
1

H= 4

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2 2
2

2

2
3 3

3
3

3

4
4 4 4 41.

5
2.

5
3.

5
4.

5

2 5 10 20

1

1

1

1
1

H= 10

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2 2
2

2

2
3

3

3

3

3

4 4 4

4
4

5 5
5

5

5

6

6
6

6

6

7

7 7 7 7

8

8 8
8

8

9

9
9 9 9

0
0

0 0 0

2
3

4
5

6

2 5 10 20Figure 1: Simulated relative e�ciency of V̂ PI
(r) over s2

(r) for normal data.We further investigate the biases and variances of s2
(r) and V̂ PI

(r) . For each distribution,we compute the estimates for the variance of each stratum from RSS samples with H = 3and m = 2, 3, 5, 10. Figure 4 reports results from normal data, where the left panels showsboxplots for V̂ PI
(r) and the right ones for s2

(r). The red line marks the true value of σ2
(r) andthe �*� marks the sample mean of the estimates. The �gure shows that s2

(r) is unbiased buthas a larger variance. On the other hand, V̂ PI
(r) tend to underestimate σ2

(r) for small r, andoverestimate σ2
(r) for larger r. However, it has a much smaller variance than s2

(r) and overall,8



1

1 1

1

1

H= 2

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2

2
2

2 21
2

3
4

5
6

2 5 10 20

1

1
1

1

1

H= 3

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2
2

2 2
2

3
3

3 3 3

2
4

6
8

10

2 5 10 20

1
1 1

1 1

H= 4

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2 2 2

2
2

3

3

3 3
3

4
4

4 4 4

2
4

6
8

10
12

2 5 10 20

1

1 1 1
1

H= 10

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2
2 2

2

2

3
3

3
3

3

4 4 4
4

4

5
5 5

5

5

6 6 6
6

6

7 7 7
7

7

8 8 8
8 8

9 9 9 9 9

0 0 0 0 0

2
4

6
8

10
12

14

2 5 10 20Figure 2: Simulated relative e�ciency of V̂ PI
(r) over s2

(r) for log-normal data.
1

1

1

1

1

H= 2

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2

2

2
2 21.

00
1.

10
1.

20

2 5 10 20

1

1
1

1 1

H= 3

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2

2

2

2

2

3

3

3 3 31.
0

1.
2

1.
4

1.
6

2 5 10 20

1

1
1

1 1

H= 4

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E) 2

2

2

2
2

3

3

3

3

3

4

4
4 4 41.

0
1.

2
1.

4
1.

6
1.

8

2 5 10 20

1
1 1 1 1

H= 10

Sample Size of each Statum

Re
lat

ive
 E

ffic
ien

cy
 (R

E)

2

2

2
2

2

3

3

3

3
3

4

4

4

4
4

5

5

5

5
5

6

6

6

6
6

7

7

7

7
7

8

8

8

8

8

9

9

9

9

9

0

0
0 0 01.

0
1.

2
1.

4
1.

6
1.

8
2.

0
2.

2

2 5 10 20Figure 3: Simulated relative e�ciency of V̂ PI
(r) over s2

(r) for Poisson data.
9



r=1 r=2 r=3

0
2

4
6

8
m= 2

*
−

Sample Mean

σ(r)
2

V(r)
PI

r=1 r=2 r=3

0
2

4
6

8

m= 2

s(r)
2

r=1 r=2 r=3

0
1

2
3

4
5

m= 3

r=1 r=2 r=3

0
1

2
3

4
5

m= 3

r=1 r=2 r=3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

m= 5

r=1 r=2 r=3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

m= 5

r=1 r=2 r=3

0.
0

0.
5

1.
0

1.
5

2.
0

m= 10

r=1 r=2 r=3

0.
0

0.
5

1.
0

1.
5

2.
0

m= 10

Figure 4: Boxplots of estimates of σ2
(r) for normal data with H = 3 and m = 2, 3, 5, 10.10



its MSE is smaller. The results for the other distributions lead to the same observations asin the normal case.2.4 Modi�ed Estimators for Symmetric distributionsWe �rst show that, when the population distribution is symmetric with �nite mean µ, σ2
(r) =

σ2
(H−r+1) for r = 1, . . . , H . Suppose that X1, . . . , XH are IID from a symmetric distributionwith a density function f(x), satisfying f(µ − x) = f(µ + x). Let F (x) and F(r)(x) be thepopulation CDF and the CDF of the rth order statistics. We know

F (µ − x) + F (µ + x) = 1from the symmetry. Then,
F(r)(µ − x) =

1

Beta(r, H − r + 1)

∫ F (µ−x)

0

tr−1(1 − t)H−rdt

=
1

Beta(r, H − r + 1)

∫ 1

1−F (µ−x)

(1 − s)r−1sH−rds

= 1 − 1

Beta(r, H − r + 1)

∫ F (µ+x)

0

(1 − s)r−1sH−rds

= 1 − F(H−r+1)(µ + x).So we have
µ(r) =

∫ +∞

−∞

xdF(r)(x)

= −
∫ +∞

−∞

(µ − t)dF(r)(µ − t)

= 2µ −
∫ +∞

−∞

xdF(H−r+1)(x)

= 2µ − µ(H−r+1),

11



and
σ2

(r) =

∫ +∞

−∞

(
x − µ(r)

)2
dF(r)(x)

= −
∫ +∞

−∞

(
µ − t − µ(r)

)2
d[1 − F(H−r+1)(µ + t)]

=

∫ +∞

−∞

(
µ(H−r+1) − x

)2
dF(H−r+1)(x)

= σ2
(H−r+1).It is reasonable to expect that our plug-in estimator V̂ PI

(r) of σ2
(r) satis�es the symmetricproperty. However, the results in Section 2.3 clearly show that, for symmetric distributions,the performance of V̂ PI

(r) is not equal to that of its counterpart V̂ PI
(H−r+1). Recall that V̂ PI

(r)tends to have a positive bias when r is close to H , but a negative bias when r is close to 1.Thus, we propose a modi�ed estimator based on our plug-in estimator by taking the averageof the corresponding top and bottom strata,
Ṽ PI

(r) = Ṽ PI
(H−r+1) =

V̂ PI
(r) + V̂ PI

(H−r+1)

2
,for r = 1, 2, . . . , [H/2]. By doing so, the bias tends to be canceled partially while the varianceis still similar. Overall, we expect that the MSE of this modi�ed estimator is smaller thanthat of the original one.We numerically compare the performance of the modi�ed estimator Ṽ PI

(r) to the originalplug-in estimator V̂ PI
(r) . We consider three symmetric distributions, uniform(0, 1), standardnormal, and t with degrees of freedom 5. All the other settings are the same as those inSection 2.3. We compute the REs of σ̃2

(r) to σ̂2,PI
(r) and plot them in Figure 6 (for normal dataonly). The �gure con�rms that Ṽ PI

(r) are uniformly better than V̂ PI
(r) . The results from theother two symmetric distributions support the conclusion, too.

12
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(r) for normal data.3 Estimating the SE of the RSS mean estimator3.1 Non-binary casesHere, we assume the variable of interest X is non-binary. We propose a new estimator forthe standard error (SE) of the RSS mean estimator using our plug-in estimator of σ2
(r). In aRSS experiment, the population mean is estimated by

µ̂ =
1

H

H∑

r=1

∑nr

i=1 X(r)i

nr13



and its variance is
Vµ ≡ var(µ̂) =

1

H2

∑

r

σ2
(r)

nr
.The above variance is commonly estimated using the sample variance s2

(r) of each stratum,namely
V̂ E

µ =
1

H2

H∑

r=1

s2
(r)

nr
, (6)This empirical estimator is known to be unreliable when the sample size nr is small for some

r. As an alternative to the empirical estimator V̂ E
µ , we apply V̂ PI

(r) to estimating (6). Theproposed new estimator of var(µ̂) becomes
V̂ PI

µ =
1

H2

H∑

r=1

V̂ PI
(r)

nr
.It is easy to show from the consistency of V̂ PI

(r) for every r that the estimator V̂ PI
µ isconsistent, too. To show its e�ciency, we again numerically compare the REs of V̂ PI
µ to

V̂ E
µ . We use the same simulation settings as in Section 2.3. The estimated REs are plottedin Figure 6. Again, we �nd that the REs are larger than 1 in every case we consider. Wealso �nd that REs decreases to 1 as m increases in the exponential, Gamma, lognormaland Poisson cases (heavier-tail distributions) while REs sometimes increase for uniform andnormal distributions. Here, a random variable X with density f(x) has a heavier tail thana random variable Y with density g(y) if g(|t|)

/
f(|t|) decreases to 0 as |t| increases.3.2 The binary caseWhen the variable of interest X is binary, the ranking can be performed based on a correlatedconcomitant variable (Lacayo et al., 2002). Chen et al. (2005) propose to rank sample unitsaccording to estimated probabilities of success from a logistic regression model. Below westudy the SE of the RSS estimator for the population proportion, say p. An applicationof unbalanced RSS in estimating p can be �nd in Chen et al. (2006). The RSS proportion14



2

2

2

2

2

Exponential

Sample Size of each Stratum

R
E

3

3

3

3

3

4

4

4

4

4

A

A

A

A

A1.
0

1.
2

1.
4

1.
6

1.
8

2 5 10 20

2
3
4
A

H= 2
H= 3
H= 4
H= 10

2

2

2 2 2

Uniform

Sample Size of each Stratum

R
E

3

3
3

3

3
4

4 4

4

4

A

A

A

A

A

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2 5 10 20

2
3
4
A

H= 2
H= 3
H= 4
H= 10

2

2

2

2
2

Normal

Sample Size of each Stratum

R
E

3

3

3

3
3

4

4

4 4 4

A

A

A

A

A

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

2 5 10 20

2
3
4
A

H= 2
H= 3
H= 4
H= 10

2

2

2

2

2

Gamma

Sample Size of each Stratum

R
E

3

3

3

3

3

4

4

4

4

4

A

A

A

A
A1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7

2 5 10 20

2
3
4
A

H= 2
H= 3
H= 4
H= 10

2

2

2

2

2

Lognormal

Sample Size of each Stratum

R
E

3

3

3

3

3

4

4

4

4

4

A

A

A

A

A

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2 5 10 20

2
3
4
A

H= 2
H= 3
H= 4
H= 10

2

2

2
2 2

Poisson

Sample Size of each Stratum

R
E

3

3

3

3

3

4

4

4

4

4

A

A

A

A

A

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

2 5 10 20

2
3
4
A

H= 2
H= 3
H= 4
H= 10

Figure 6: Simulated relative e�ciency of V̂ PI
µ to V̂ E

µ for estimating var(µ̂)15



estimator p̂ is the RSS mean estimator when the variable of interest X is binary. Theunknown true variance of p̂ is then
var(p̂) =

1

H2

∑

r

p(r)

[
1 − p(r)

]

nr

,where p(r) is the probability of 1 for the rth order statistic X(r)i.Two estimators of the above SE of p̂ were proposed in the literature (Chen et al., 2003).One is based on the variance of binary observations; that is
V̂ B

p =
1

H2

H∑

r=1

p̂(r)[1 − p̂(r)]

nr
,where p̂(r) is an estimator of p(r). The other is based on the sample variance of each stratum;that is

V̂ E
p =

1

H2

H∑

r=1

s2
(r)

nr

.The estimators V̂ B
p and V̂ E

p have larger variances when nrs are small for some r. Further,they are not well de�ned when nr = 1 for some r.We extend the results in Section 2 to binary observations and propose a plug-in estimatorof the SE for the RSS population estimator. Here, we propose to estimate p(r) using (1).Noting that the estimate of the population CDF F̂ (x) has a support on x = 0, 1, (1) resultsin p̂ PI
(r) = Ip̂

(
r, H − r +1

)
, where p̂ = F̂ (1). Thus, the proposed plug-in estimator of var(p̂) is

V̂ PI
p =

1

H2

∑

r

p̂ PI
(r)

[
1 − p̂ PI

(r)

]

nr

.We again numerically compare the MSE of the plug-in estimator V̂ PI
p with the two existingestimators V̂ E

p and V̂ B
p . We consider the cases with H = 5, 10 and 20. For each H , the nrare chosen as (i) all are 1 (ALL1), (ii) all are 3 (ALL3), and (iii) the �rst half of nrs are 3and the other half are 10 (MIX). In the simulation, the true population proportion is �xedas p = 0.1, 0.3, or 0.5. We generate 10, 000 data sets for each case and compute the RE ofthe plug-in estimator to each existing estimator. The REs are reported in Table 1, whichclearly shows the plug-in estimator signi�cantly outperforms the two existing estimators.16



p=0.1 p=0.3 p=0.5H Case B/PI E/PI B/PI E/PI B/PI E/PI5 ALL1 (0.01034) (0.00657) (0.00285)ALL3 1.14 1.36 4.14 4.56 14.37 14.76MIX 3.07 2.94 14.33 13.60 3.24 4.2310 ALL1 (0.00256) (0.00084) (0.00030)ALL3 1.94 2.12 7.89 7.77 43.55 41.61MIX 6.24 6.00 47.85 45.02 3.41 3.6020 ALL1 (0.0004) (0.00015) (0.00003)ALL3 3.83 3.83 13.07 11.54 99.83 88.02MIX 11.35 10.89 66.39 63.19 3.45 3.50Table 1: Simulated relative e�ciency of the propose plug-in estimator to each of the twoexisting methods. �B� represents V̂ B
p , �E� represents V̂ E

p , and �PI� represents V̂ PI
p . Thenumbers in parenthesis is the MSE of the plug-in estimator since the existing methods arenot applicable to ALL1.4 Empirical StudiesIn this section, we apply the proposed plug-in estimator to analyze tree data from Platt etal. (1988) and Chen et al. (2003). We treat the reported tree data as the true population.We apply balanced RSS to the entire height in feet (X) and estimate the average heightusing the RSS.First, we numerically compute the REs of the proposed plug-in estimator to the empiricalestimator in estimating the SE of the RSS mean estimator µ̂. We draw RSS samples fromthe entire tree data set with the number of strata H = 2, 3, 4 and number of observations ineach stratum m = 2, 3, 5, 10. We generate 10, 000 RSS data sets and, in each RSS data set,we compute the estimates of variances of strata r, r = 1, 2, . . . , H . The true variance of eachstratum is computed by treating the tree data as the population. The REs for estimating theSE of µ̂ are plotted in Figure 7. The proposed plug-in estimator V̂ PI

µ is much more e�cientthan the empirical estimator V̂ E
µ for all Hs when m is small, and the RE decreases to 1 as

m increases.Second, to show the practical importance of the proposed estimator, we study the cover-17
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Figure 7: Simulated relative e�ciency of V̂ PI
µ to V̂ E

µ for estimating var(µ̂) in tree dataage probability of the interval estimator of the population mean, which is closely related withthe performance of the SE of the RSS mean estimator. In each RSS data set, we construct
100(1 − α)% con�dence interval of the population mean as

µ̂ ± zα/2V̂
1/2
µ ,where zα/2 is 100α−th upper percentile of the standard normal distribution. The computedcoverage probability is given by the proportion of data sets whose con�dence intervals containthe true average height µ. The results are reported in Table 2. Overall, V̂ PI

µ provides moreaccurate coverage probabilities than V̂ E
µ . The improvement is largest for small m.

18



90% CP 95% CPH m E PI E PI2 2 0.770 0.804 0.833 0.8522 3 0.815 0.827 0.867 0.8732 5 0.843 0.848 0.890 0.8912 10 0.885 0.886 0.927 0.9273 2 0.789 0.862 0.849 0.9063 3 0.828 0.860 0.880 0.9033 5 0.869 0.883 0.912 0.9223 10 0.905 0.910 0.947 0.9494 2 0.793 0.882 0.856 0.9224 3 0.844 0.884 0.891 0.9224 5 0.886 0.905 0.928 0.9404 10 0.921 0.928 0.959 0.963Table 2: Coverage probabilities based on V̂ PI
µ and V̂ E

µ for interval estimation in tree data."E" and "PI" stand for V̂ PI
µ and V̂ E

µ , respectively.5 DiscussionIn this paper, we are motivated by the identity between the CDFs F(r)(·) and F (·), andpropose a new plug-in estimator for variances of strata in RSS. We analytically derive itsasymptotic distribution and consistency. We numerically show that the proposed estimatoris more e�cient than the empirical estimator. We further apply it to estimate the SE ofthe RSS mean estimator and show it outperforms existing estimators through simulation.The analysis of tree data shows that our plug-in estimator of the SE provides better intervalestimation of the population mean than the empirical estimator.In addition, for symmetric distributions, we propose a modi�ed plug-in estimator Ṽ PI
(r) of

σ2
(r) to take into account the symmetry, which improves the original plug-in estimator V̂ PI

(r) .It should be mentioned that Ṽ PI
(r) does not necessarily improve the estimation of the SE. Forexample, if we consider a balanced RSS study, both estimators Ṽ PI

(r) and V̂ PI
(r) gives the sameSE estimator, namely
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V̂ PI
µ =

1

mH2

H∑

r=1

V̂ PI
(r) .We conclude this paper by pointing out two merits of our proposed methods. First, theplug-in estimators are well de�ned with any population CDF estimate including those fromSRS or reported in the previous literature. Thus, it does not require a pilot RSS study. Theycan also be applied directly to judgment post-strati�cation (e.g.,MacEachern et al. 2004, Duand MacEachern 2008, Wang et al. 2006), which is an alternative to RSS.ReferencesChen, H., Stasny, E., and Wolfe, D.A. (2005). Ranked set sampling for e�cient estimationof a population proportion. Statistics in Medicine, 24, 3319-3329.Chen, H., Stasny, E., and Wolfe, D.A. (2006). Unbalanced ranked set sampling for estimatinga population proportion. Biometrics, 62, 150-158.Chen, Z. (1999). Density estimation using ranked set sampling data. Environmental andEcological Statistics 6, 135-146.Chen, Z., Bai, Z., and Sinha, B. K. (2003). Ranked Set Sampling: theory and applications.Springer. New York.David, H.A. and Nagaraja, H.N. (2003). Order Statistics. 3rd edition. John Wiley and Sons.New York.Du, J. and MacEachern, S.N. (2008). Judgement Post-Strati�cation for Designed Experi-ments. Biometrics 64, 345-354.Kvam, P.H. and Samaniego, F.J. (1994). Nonparametric maximum likelihood estimationbased on ranked set samples. Journal of the American Statistical Association 89, 526-537.20
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