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Abstract

This paper extends the permutation procedures for truncated data in Diaconis et al. (http://www-
stat.stanford.edu/∼susan/.) to doubly censored data. As in Diaconis et al. (http://www-stat.stanford.
edu/∼susan/.), the proposed procedure is based on samples from the conditional distribution of rank
statistics which is uniformly distributed on a set of permutations. Subsequently, our procedure is
applied to testing independence with bivariate censored data and estimating a regression coefficient
with doubly censored data. Also, when estimating a regression coefficient with doubly censored data,
simulation studies show that the proposed procedure is superior to that of Akritas et al. (J. Amer.
Statist. Assoc. 90 (1995) 170).
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical procedures based on rank statistics have been popular because of their robust-
ness to distributional assumptions. Among many rank based procedures, Kendall’s tau (KT)
statistics has been widely used as a measure for sample correlation. Two most important
applications of KT statistics are testing independence and estimating the regression coeffi-
cient between two samples. For observations{(Xi, Yi)}ni=1, the KT statistics is defined as
� = 2S/n(n − 1), whereS is the difference between the number of concordant pairs and
that of disconcordant pairs. Since� is asymptotically normally distributed with a mean of
0 and the variance of(4n+ 10)/(9 · n(n− 1)) (Kendall, 1948), the independence between
X andY can be tested by test statisticst = �/

√
var(�). The KT statistics can also be used
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for estimating a regression coefficient. Suppose(X1, Y1), (X2, Y2), . . . , (Xn, Yn) are from
Yi = �0 + �1Xi + �i where�i ∼ (0, �2

� ). Then, one important regression assumption is
the independence betweenXi and�i = Yi − �0 − �1Xi , or, equivalently, the independence
betweenXi andYi −�1Xi . Based on the observation,Theil (1950)andSen (1968)propose
to estimate�1 using� which makes KT statistics betweenXi andYi −�Xi as 0; we denote
this estimator as the Theil–Sen estimator.

In practice, however, incompleteness in data (e.g. truncation, censoring, missing) pro-
duces bias or inefficiency in existing procedures. Among various types of incompleteness,
this paper focuses on doubly censored data. Here, doubly censoring means censoring oc-
curs in bothX andY. Several modifications of the KT statistics have been proposed in the
previous literature. First,Oakes (1982)proposed to compute KT statistics only based on
known (dis)con-cordance pairs and derived its’ asymptotic properties.Akritas et al. (1995)
proposed a modification of Theil–Sen slope estimator, where the KT statistics between
residuals and covariates was computed using only known (dis)con-cordance pairs as in
Oakes (1982). In contrast,Weier and Basu (1980)proposed to use the information from
unknown pairs relying on the Kaplan–Meier estimator when testing independence.

It has been known that, whenX andYare independent, the KT statistics is equivalent to
the graphical distance of the observed point from the center in a suitable permutation space
(Diaconis et al., 1999). Accordingly, the independence can be tested by examining how
much the KT statistics of the observations are deviate from the center in permutation space.
Like other procedures, some modifications for incomplete data (mostly for truncated data)
have been proposed in literature. In particular, when data is truncated, the permutation space
is restricted andDiaconis et al. (1999)discussed the general frameworks for permutation
procedures with restricted position.

Censoring is quite different from truncation in the sense that censored subjects are
“observed” and have some information on the underlying distribution. Accordingly, censor-
ing produces uncertainty in the KT statistics of the observation and, equivalently, produces
the restriction on the permutation space. It is worth noting that the truncated subjects are
“not observed” and also result in the restriction of the permutation space.

This paper extends the permutation procedures inDiaconis et al. (1999)to doubly cen-
sored data. In Section 2, we prove that the KT statistics are distributed uniformly on a specific
set when the data is doubly censored. Subsequently, procedures are proposed for generating
samples from the uniform distribution. In Section 3, we apply the proposed procedure in
Section 2 to testing independence between doubly censored pairs. In Section 4, we discuss
the estimation of a regression coefficient with doubly censored data. Simulation studies
show the superiority of the permutation procedure to the modified estimator byAkritas
et al. (1995). Finally, Section 5 concludes the paper. Random censoring for bothX andY
is assumed in testing independence, whereas the conditional independence between cen-
soring distribution and uncensoredY , given uncensoredX, is assumed in doubly censored
regression.

2. Permutation procedures for censored data

In this section, we introduce the notations which will be used in the remainder of the
paper and propose a general permutation procedure for the censored data.
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2.1. Notations

Suppose the followingn-pairs of data are observed:

{(x1, u1), (y1, v1)}, {(x2, u2), (y2, v2)}, . . . , {(xn, un), (yn, vn)},
where{ui}ni=1 and{vi}ni=1 takes 0 or 1 depending on whether the corresponding component
is censored or not. Then, the following notations will be used in the remainder of the paper:

• The set{1,2, . . . , n} is denoted by[n].
• � = (�(1), . . . , �(n)) is a permutation of[n] = {1,2, . . . , n}, where�(i) is the label at

positioni of the permutation�.
• �0 = (�0(1), . . . , �0(n))= (1, . . . , n).
• The graphical distance (GD) between two permutations�1 and �2, denoted byGD
(�1, �2), is defined as the minimum number of pairwise adjacent transpositions required
to bring �1 to �2. For example, the graphical distance between�1 = (1,4,3,2) and
�2 = (1,2,3,4) is 2, since sequential transpositions of 4 and 3 and that of 4 and 2 in
�1 gives�2; there is no way to reach from�1 to �2 with one transposition. In higher
dimension, the distance is often hard to evaluate, but it is well defined distance in a
permutation space.

• LetSn be the set of all possible permutations on{1,2, . . . , n} equipped with the graphical
distanceGD(·, ·).
Beyond the above conventional notations from combinatorics, we define more notations

for this paper. Let

(X,U)= {(x1, u1), . . . , (xn, un)} and (Y, V )= {(y1, v1), (y2, v2), . . . , (yn, vn)}.

• Let RX(k) be the all possible ranks ofXk in the permutation andRX = (RX(1),
RX(2), . . . , RX(n)). RY (k) andRY are similarly defined.

• The compatibleset to the sequence(X,U) and (Y, V ), sayAXY , is defined to be a
class of permutation pairs(�X, �Y ) satisfying�X(k) ∈ RX(k) and�Y (k) ∈ RY (k). For
example, when

(X,U)= {(1,0), (3,1), (4,1)} and (Y, V )= {(2,1), (3,0), (4,1)}
and the right censoring is assumed (ui = 0 implies true observation is larger thanxi),

RX = {(1,2,3), (2,1,3), (3,1,2)},
RY = {(1,2,3), (1,3,2)}. (1)

The compatible setAXY becomes the set of(
1 2 3
1 2 3

)
,

(
2 1 3
1 2 3

)
, . . . ,

(
3 1 2
1 3 2

)
.
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• The projection�(�X, �Y ) (from Sn × Sn to Sn) maps the permutation pair(�X, �Y ) ∈
Sn × Sn representing(

�X(1) �X(2) �X(3) · · · �X(n)
�Y (1) �Y (2) �Y (3) · · · �Y (n)

)
to an element inSn whosekth component is�Y (�

−1
X (k)). For example, the projection

map� maps both(
1 3 2
1 2 3

)
and

(
3 1 2
2 1 3

)
to (1,3,2).

• Given the observation(X,U), let I be ann× n zero–one matrix, where 1 in the(i, j)th
component indicates that theith subject can be matched (transposed) to thej th subject.
Further, letSI be the set of all permitted permutations corresponding to a zero–one
matrix I. For example,(Y, V ) in (1) has the incidence matrix

I =
(1 0 0

0 1 1
0 1 1

)
,

where 1 in(2,2) represents the second component can have rank 2.
• Let the set of permutationsA be connected if any pair of two permutations inA can be

accessible to each other using transposition operation.

2.2. General procedures

Both testing independence and estimating a regression coefficient with doubly censored
data heavily depend on the KT statistics, which is equivalent to the graphical distance (GD)
between a permutation and the pre-determined center�0 (Diaconis et al., 1999). Hence, in
a censored pair of permutations(�X, �Y ), the graphical distance between�(AXY ) and�0,
sayGD(�(AXY ), �0), is of interest in this paper. When no censoring occurs, the uncertainty
does not appear in the compatible setAXY andGD(�(AXY ), �0).

The difficulties in analyzing censored data stem from complexity of the conditional distri-
bution ofGD(�(AXY ), �0) (given the observations), which cannot be expressed as a simple
formula. However, it can be shown thatP((�X, �Y )|(X, U), (Y, V )) is distributed uniformly
onAXY . Accordingly, to generate a sample from the distribution ofGD(�(AXY ), �0), it
suffices to obtain a sample from the uniform distribution onAXY .

Theorem 2.1. Suppose there exist measures�X and�Y such that

P(Xi ∈ Ai, Yi ∈ Bi,1� i�n)=
n∏
i=1

�X(Ai) · �Y (Bi). (2)

Then, any pair of permutations�1 and�2 in RX satisfies

P
(
X�1(1)�X�1(2)� · · · �X�1(n)|(X,U)

)
= P (X�2(1)�X�2(2)� · · · �X�2(n)|(X,U)

)
. (3)

Also the same is true for any permutation pair(�1, �2) in RY .
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Proof. Lemma 3.3 inDiaconis et al. (1999)proved that the graphG—having a ver-
tex setSI and the edges between� and � (where� and � differ by a transposition of
label)—is connected if the ones in each row ofI (zero–one restriction matrix) lie in an
interval. Hence, it suffices to show that Eq. (2) holds for the pair�1 and �2, whose
graphical distance is one (i.e. for somei, j ∈ [n], (�1(i), �1(j)) = (�2(j), �2(j)) and
�1(k) = �2(k) for every otherk). EventsE−{i,j}(�), Ei,j (�), andEj,i(�) are defined
as {X�(1)� · · · �X�(i−1)�X�(i+1)� · · · �X�(j−1)�X�(j+1)�X�(n)}, {X�(i−1)�X�(i)
�X�(i+1) andX�(j−1)�X�(j)�X�(j+1)} and{X�(i−1)�X�(j)�X�(i+1) andX�(j−1)
�X�(i)�X�(j+1)},respectively. Then, the left-hand side of Eq. (2) is

(LHS)= P (X�1(1)�X�1(2)� · · · �X�1(n)|(X,U)
)

= P (Ei,j (�1)|E−{i,j}(�1), (X,U)
) · P (E−{i,j}(�1)|(X,U)

)
= P (Ej,i(�1)|E−{i,j}(�1), (X,U)

) · P (E−{i,j}(�1)|(X,U)
)

(4)

= P (Ei,j (�2)|E−{i,j}(�2), (X,U)
) · P (E−{i,j}(�2)|(X,U)

)
(5)

= P (X�2(1)�X�2(2)� · · · �X�2(n)|(X,U)
)= (RHS). �

Generating a pair of permutation from theP (�(AXY )|(X,U), (Y, V )) can be achieved
by sequentially sampling from uniform distributionsP (�X|(X,U)) andP (�Y |(Y, V )). As
in the remarks for Lemma 3.3 inDiaconis et al. (1999), when the setSI is connected, we can
run a Markov chain onSI having a uniform stationary distribution onSI . The Markov chain
can be described as follows: (i) from� ∈ SI , choose one of

(
n
2

)
transpositions uniformly

at random and transform� by switching those two chosen labels and (ii) the chain moves
the new permutation if it is inSI and it stays in the current position otherwise. WhenI
has one-sided restrictions, the procedure is much simpler. LetSb be a set of permutations�
satisfying�(i)�bi for all i ∈ [n]. Without loss of generality,b1�b2� · · · �bn is assumed.
The uniform choice fromSb could be achieved by

1. choosing�(1) uniformly fromJ1 = {j : j�b1}
2. choosing�(2) from the setJ2 = {j : j�b2} − {�(1)}, and
3. repeat (i) and (ii).

3. Testing independence with bivariate censored data

One simple random effects model is matched pair data model, where individuals in the
ith pair share a common random effect (heterogeneity). This common random effect yields
a positive correlation between the individuals in each pair; hence, testing the existence of
random effects can be implemented by testing the independence between pairs.

The KT statistics has provided a simple test for independence in a bivariate distribution.
Furthermore, as pointed out in the Introduction, much research has been done on modify-
ing the KT statistics to adapting censored data. In this section, the proposed permutation
procedure is applied to testing independence as a potential remedy for existing conven-
tional procedures (Weier and Basu, 1980; Oakes, 1982). Three data sets—the leukemia
remission times data fromOakes (1982), the data on times to tumor occurrences from
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Mantel and Ciminera (1979), and the kidney patients data inMcGilchrist and Aisbett
(1991)—are analyzed. In all three examples, only right censoring occurs and it results
in one-sided restrictions in permutations.

3.1. Example in Oakes (1982)

The leukemia remission times data inOakes (1982)was analyzed. As inOakes (1982),
it was assumed that death at a given time always precedes censoring at the same time and
other ties were broken down randomly. In the permutation procedure,N = 2000 samples
were generated from the uniform distribution on the compatible set. From each permutation,
the KT statistics was evaluated. The mean and the variance of the sampled KT statistics
were−0.0690 and 0.0072, respectively. The permutation based estimator is given by�̂ =∑N
i=1 �i/N and the variance of̂� can be approximated to the sum of within variation,

(4n + 1)/(9n(n − 1)), and between variation,
∑N
i=1 (�i − �̂)2/(N − 1), as inXie and

Paik (1997). Accordingly,̂� = −0.0690 and var(̂�) = 0.3206. The correspondingt-value
was−0.3853, which indicated no evidence against the independence assumption. InOakes
(1982), the standardized statistics was−0.84 and the same conclusion was reached.

3.2. Example in Clayton (1991)

The example in this section is the time to tumor occurrence as described inMantel and
Ciminera (1979)andClayton (1991). Three rats were from each of 50 litters where one rat
was treated with putative carcinogen and the other two served as control cases. The time to
tumor occurrence or censoring was recorded to the nearest week. In the analysis, the first (the
exposed) and the third column (the control) ofTable 1in Clayton (1991)were used. In the
permutation procedure,N = 10 000 samples were generated from the uniform distribution
on the compatible set. In each permutation sample, the KT statistics was evaluated. The
mean and the variance of sampled�s were 0.0756 and 0.0065, respectively. According to
the asymptotic results,̂� = 0.0756, var(̂�) = 0.01606, andt-value was 0.5972. Hence, it
can be concluded that there was no positive correlation between subjects in a pair, which
implies that random effects may not be present in the model. This was also apparent from the

negligible difference between the maximum partial likelihood estimator
(̂
�

Cox = 0.907
)

and the estimator from the frailty model
(̂
�

Clayton= 0.919
)
. It should be noted that Oakes’

procedure cannot be applicable to this data because of heavy censoring as pointed out in
Oakes (1982).

3.3. Example in McGilchrist and Aisbett (1991)

The last example is times to infection for kidney patients using portable dialyze. For
each patient two such recurrence times were observed.McGilchrist and Aisbett (1991)
assumed that the only correlation between recurrence intervals for failures was due to
common random effects, called frailties. For more explanation on data, seeMcGilchrist
and Aisbett (1991). The data showed a large difference between two recurrence times of
some individuals, and the assumption of positive correlation was quite spurious. Since
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Table 1
Comparison with Theil–Sen estimator withn= 50,n= 30, andn= 20

(n= 50) Parallel Type I

Perm. T–S Perm. T–S

NocensoredX mean (std) 1.5039 (0.0422) 1.4971 (0.0355) 1.4635 (0.0421) 1.3910 (0.0509)√
MSE 0.04229 0.0355 0.0556 0.1202

CensoredX mean (std) 1.5076 (0.0384) 1.5001 (0.0369) 1.4655 (0.0470) 1.3935 (0.0543)√
MSE 0.0390 0.0368 0.0582 0.1195

(n= 30)

NocensoredX mean (std) 1.4950 (0.0410) 1.4959 (0.0496) 1.4938 (0.0497) 1.2897 (0.0896)√
MSE 0.0411 0.0495 0.0499 0.2284

CensoredX mean (std) 1.4962 (0.0460) 1.4963 (0.0543) 1.4611 (0.0612) 1.3873 (0.0670)√
MSE 0.0459 0.0542 0.0722 0.1310

(n= 20)

NocensoredX mean (std) 1.4899 (0.0655) 1.4942 (0.0635) 1.4947 (0.0647) 1.2710 (0.1066)√
MSE 0.0659 0.0634 0.0646 0.2523

CensoredX mean (std) 1.4930 (0.0789) 1.4971 (0.0681) 1.4581 (0.0867) 1.3842 (0.0842)√
MSE 0.0788 0.0678 0.0959 0.1429

“Perm.” and “T–S” represents our permutation procedure and Theil–Sen estimator, respectively.

each pair also shared other common factors causing strong dependency such as age and
gender (besides the common heterogeneity), the rejection of independence assumption
could provide a strong basis against the common frailty model. The permutation procedure
was applied withN = 2000 samples from the uniform distribution on�(�X, �Y ). As in
other examples, the KT statistics was evaluated for each sample. The mean and the variance
of sampled�s were 0.17943 and 0.00391, respectively. Accordingly,�̂ = 0.1794, var(̂�)=
0.0167, andt=1.38796 (p-value=0.1651). Here, the result implied that the common frailty
model may not be appropriate. On the other hand, Oakes’ procedure yielded�̂ = 0.0448
and var(̂�) = 0.00482, and the standardized statistics was 0.6455. Hence, the results were
consistent with those obtained by Oakes’ procedure.

4. Theil–Sen estimator with doubly censored data

In this section, we apply the permutation procedure to the regression with doubly censored
data. Simulation studies are implemented to compare the proposed procedures with the
modified Theil–Sen estimator byAkritas et al. (1995). Hereafter, we denote the above
modified Theil–Sen estimator as the Theil–Sen estimator for notational simplicity.

Suppose{Xi, Yi}∞i=1 are observed from the model,Yi = � · Xi + �i , where �i are
independently and identically distributed with a mean of 0 and a variance of�2. To estimate
regression coefficients,Theil (1950)andSen (1968)proposed the Theil–Sen estimator de-
fined as the value ofb that makes the KT statistics between the residual and the covariate
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be 0. To be specific,

b̂TS =
b :

∑
i<j

[
I (Xi <Xj )− I (Xj <Xi)

]

× [
I
(
ri(b)< rj (b)

)− I (rj (b)< rj (b))]= 0

 ,
whereri(b) = yi − b · xi , for everyi. The Theil–Sen estimator can also be interpreted as
the median of slopes(yi − yj )/(xi − xj ). Akritas et al. (1995)proposed a modification of
the Theil–Sen estimator for doubly censored data, which is defined as the solutionb of the
equation

Tn(b)=
∑
i<j

�xi · �xj · [I (Xi <Xj )− I (Xj <Xi)]
×
[
�yi I

(
ri(b)< rj (b)

)− �yj I
(
rj (b)< rj (b)

)]= 0.

In this paper,ri(b) is written asri for simplicity.
The permutation procedure in Section 2 can also be applied to estimating the regression

coefficient with doubly censored data. Here, the residuals could be right censored, left
censored or both and the permutation procedures for interval restrictions are employed.

SupposeR= {ri}ni=1 is ordered as follows: (i) the interval-censored observations appear
first, the left- and the right-censored observations are in the middle, then the uncensored
follow in the last position, (ii) among left-censored (or right-censored) observations, the
smaller (or larger)ri(b)s come earlier. For example, when observing the following data
(with b = 1)

(0.5,2), (1R,2), (1.5,2R), (1.5R,2), (0.5R,1.5R),

their residuals(1.5,1L ,0.5R,0.5L ,1B) are ordered as(1B,0.5L ,1L ,0.5R,1.5). Here, L, R
and B represent the censoring direction. LetAXR be the compatible space corresponding
to {ri(b)}ni=1 and{Xi}ni=1. As in Section 3,J (ri) is all possible ranks ofri compatible with
the censored observations. Under the assumption that it cannot be stopped, the following
algorithm results in a uniform choice fromAXR. First, chooser∗1 uniformly from J (r1).
Subsequently, chooser∗k uniformly from J (rk) − {r∗1 , r∗2 , . . . , r∗k−1}. After sampling the
ranks of censored observations, fill in the remainder of ranks with uncensored observations.
Finally, repeat this procedures with respect toX={Xk}nk=1. The proof of the above algorithm
is similar to that of Lemma 3.3 inDiaconis et al. (1999). If there is a chance that the proposed
procedure stops, the Markov chain method introduced in Section 2.2 can be used.

In next section, we implement simulation studies to show the superiority of the proposed
procedure to the modified Theil–Sen estimator byAkritas et al. (1995)in finite sample.
Subsequently, the permutation procedure is applied to analyze the astronomical data from
Heckman et al. (1989).



340 J. Lim / Computational Statistics & Data Analysis 50 (2006) 332–345

4.1. Simulation study

In this section, we implemented several simulation studies to investigate the performance
of the proposed procedure. In the following simulation, we restricted our interest into the
cases considered inAkritas et al. (1995); parallel and Type I censoring with one-sided
restrictions (right or left censoring). In our rank based procedure, right censoring and left
censoring were symmetric to each other along with the transformationY ′ = −Y . Hence,
we only consider right censoring in this paper.

Simulations were implemented with small sample sizes (n= 20,30, and 50) and with a
considerable amount of censoring in bothX andY. As in Akritas et al. (1995), XTs were
from the exponential distribution and theY Ts were from the linear regression model with
a Gaussian error. Four different cases were considered depending on (i) parallel censoring
or Type-I censoring and (ii) the covariates are censored or not.

The true covariatesXT
i s were generated from the exponential distribution with a mean of

10, and the true responseY T
i s were fromY T

i = �1 ·XT
i +N(0, �2). On the other hand, the

censoring covariatesXC
i s were from the exponential distribution with a mean of 2, and the

censoring responsesYC
i s were fromYC

i =�0 +�1 ·XT
i +N(0,3). First, in Type I censoring

with uncensored covariates, the minimum betweenY T
i and 10 was recorded. Second, in

Type I censoring with censored covariates, the minimum betweenY T
i and 5 was recorded

and the observed covariate was the maximum ofXT
i andXC

i . Third, in parallel censoring
with uncensored covariates,�0 was chosen as−0.5 and the maximum betweenY T

i and
YC
i was recorded. Finally, in parallel censoring with censored covariates,�0 was chosen as

−0.2 and the maximum betweenY T
i andYC

i was recorded, where the observed covariates
were same with that in Type-I censoring.

First, to investigate small sample properties of the proposed estimator, we set�1 = 1.5
and�2 = 3, and simulated 100 data sets withn = 20,30, and 50 for the above four cases.
WhenX was not censored, the censoring rates ofYwas approximately 50%; whenX was
censored, rates ofX andY was approximately 20% and 35% forX andY , respectively.
In Type I censoring, our procedure was superior to the Theil–Sen estimator in terms of
both bias and the mean squared error (MSE). In parallel censoring, both the permutation
procedure and the Theil–Sen procedure performed quite well. The results were reported in
Table 1. We also presented the density plots of the estimates by both methods inFig. 1.

Second, we implemented a simulation study to investigate the performance of our pro-
cedure under heterogeneity and to compare it with the Theil–Sen estimator. We generated
data sets withn= 50. The first 25 samples in each data set were generated from the model
with Gaussian noiseN(0, �2

1), whereas the second 25 samples were from the model with
Gaussian noiseN(0, �2

2) with �2
1< �2

2. We considered three different cases depending on
R = �2

2/�
2
1 (R = 1,2, and 3) and, in each case, 100 data sets were generated. In parallel

censoring type, our procedures were performed as well as the Theil–Sen estimator did. In
Type-I censoring, the superiority of the permutation procedure to the Theil–Sen estimator
did not hurt by heterogeneity (Table 2).

Third, we implemented a simulation study for different values of regression slopes
�1 = 0.5, 1.5, and 2.5. Table 3showed that, in parallel censoring, both the permutation
based estimator and the Theil–Sen estimator performed well regardless of the magni-
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Fig. 1. Density plot of the estimates from two different procedures; the proposed permutation procedure and the
modified Theil–Sen procedure byAkritas et al. (1995).

Table 2
The results are based on 100 data sets withn= 50. The first 25 observations have Gaussian errors with a variance
of �2

1 and the second half observations have that of�2
2. Ratio is the ratio of those standard deviations�2

2/�
2
1

Parallel Type I

Perm. T–S Perm. T–S

Ratio= 1 mean (std) 1.5076 (0.0384) 1.4970 (0.0368) 1.4655 (0.0470) 1.3935 (0.0543)√
MSE 0.0390 0.0368 0.0582 0.1195

Ratio= 2 mean (std) 1.5034 (0.0357) 1.5013 (0.0348) 1.4653 (0.0446) 1.3895 (0.0524)√
MSE 0.0355 0.0346 0.0563 0.1221

Ratio= 3 mean (std) 1.4986 (0.0624) 1.5039 (0.0466) 1.4507 (0.0592) 1.3500 (0.0695)√
MSE 0.0621 0.0465 0.0768 0.1652

“Perm.” and “T–S” represents our permutation procedure and Theil–Sen estimator, respectively.

tude of the regression slope. However, in Type I censoring, our estimator performed better
than the Theil–Sen estimator in terms of both bias and MSE. In particular, the Theil–Sen
estimate was significantly downward biased in Type I censoring when� was small
(� = 0.5 or 1.5).
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Table 3
Comparison with Theil–Sen estimator for different slope values,� = 0.5, � = 1.5, and� = 2.5

� = 0.5 Parallel Type I

Perm. T–S Perm. T–S

NocensoredX mean (std) 0.4995 (0.0180) 0.5006 (0.0178) 0.4812 (0.0398) 0.1622 (0.0504)√
MSE 0.0180 0.0178 0.0439 0.3415

CensoredX mean (std) 0.4992 (0.0207) 0.4997 (0.0200) 0.3261 (0.0537) 0.2154 (0.0584)√
MSE 0.0207 0.0200 0.1819 0.2905

� = 1.5

NocensoredX mean (std) 1.5039 (0.0422) 1.4971 (0.0355) 1.4635 (0.0421) 1.3910 (0.0509)√
MSE 0.04229 0.0355 0.0556 0.1202

CensoredX mean (std) 1.5076 (0.0384) 1.5001 (0.0369) 1.4655 (0.0470) 1.3935 (0.0543)√
MSE 0.0390 0.0368 0.0582 0.1195

� = 2.5

NocensoredX mean (std) 2.5014 (0.0181) 2.5044 (0.0192) 2.5008 (0.0188) 2.4062 (0.0536)√
MSE 0.0181 0.0197 0.0187 0.1079

CensoredX mean (std) 2.5082 (0.0233) 2.5042 (0.0183) 2.4980 (0.0261) 2.4672 (0.0305)√
MSE 0.0247 0.0188 0.0260 0.0447

“Perm.” and “T–S” represents our permutation procedure and Theil–Sen estimator, respectively. Each values are
based on 100 simulated data sets.

Finally, we discuss the confidence interval (C.I). For the Theil–Sen estimation with com-
plete data,Sen (1968)proposed the 100· (1 − 	)% C.I. as(�∗

L, �
∗
U), where

�∗
L = inf

{
b : �n(b)� − z	/2

√
(4n+ 10)/(9 · n(n− 1))

}
(6)

�∗
U = sup

{
b : �n(b)�z	/2

√
(4n+ 10)/(9 · n(n− 1))

}
, (7)

and�n(b) = 2 · Tn(b)/n · (n − 1). Here, the variability associated with the permutation
estimate, say�n(b), is the sum of two components:

var(�n(b0)|Obs.) ≈ 4n+ 10

9 · n(n− 1)
+ var(�n(b)|Obs.), (8)

where the first term is the contribution of the random data itself and the second term is the
contribution of the censoring, roughly. The above variance formula of the estimator based
on Monte Carlo samples is not new from this paper, but has often been used in the literature
of multiple imputation (see p. 257 inLittle and Rubin, 1987; Xie and Paik, 1997). In
practice, var(�n(b0)|Obs.) is estimated using the samples from the conditional distribution
of ranks given the observed values. Accordingly, we propose to approximate the 100×(1−	)
C.I. to

�∗
L = inf

{
b : �n(b)� − z	/2

√
(4n+ 10)/(9 · n(n− 1))+ var(�n(b)|Obs.)

}
(9)

�∗
U = sup

{
b : �n(b)�z	/2

√
(4n+ 10)/(9 · n(n− 1))+ var(�n(b)|Obs.)

}
. (10)
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Fig. 2. TheX-axis is logP1.4, which is the radio power at 1.4 GHz in units of W/Hz and theY -axis is logLCO,
the luminosity of carbon monoxide emission inkps2 km/s.

To investigate the accuracy of the proposed C.I., we computed the coverage probabilities
for the cases of�=1.5 andn=50 inTable 1. In each case, 1000 data sets withn=50 were
generated and the coverage probabilities of 95% C.I. were computed. For the case of Type
I censoring with uncensored covariate, the coverage probability was 99.5%; for the case of
Type I censoring with censored covariate, it was 96.2%; for the case of parallel censoring
with uncensored covariate, it was 98.4%; finally, for the case of parallel censoring with
censored covariate, it was 99.3%. In overall, the proposed C.I. did not provide an accurate
coverage probability except a few cases. It may be because the proposed C.I. again relied
on large sample theory and can be inaccurate with small number of samples.

4.2. Example in astronomical data

In this section, the permutation procedure was applied to the astronomical data used for
constructingTable 2in Heckman et al. (1989). They were interested in whether or not the
radio emission produced by Seyfert galaxies was related to its’ rate of star formulation as
in normal spiral galaxies. As explained inAkritas et al. (1995), the star formulation rate
scales with the quantity of dense molecular gas in the galaxy, which is measured by the
line emission of carbon monoxide molecule. Thus, they regressed the radio power on the
luminosity of carbon monoxide emission (seeFig. 2).

We computed the regression slope for the Seyfert galaxy sample of 52 observations of
which 23 were uncensored; 25 were censored in logLCO; 1 was censored in logP1,4; and
3 were censored in both variables. As inAkritas et al. (1995), the permutation procedure
was applied to log-transformed data and obtained the following estimates (for more detail
on other estimators, seeAkritas et al., 1995):

Laan median of pairwise slopes 0.5553.
Laan weighted least squares slope 0.6075.
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Nearest-neighbor median of pairwise slopes 0.5179.
Nearest-neighbor weighted least squares slope 0.5970.
Theil–Sen slope 0.5176.
Permutation estimate 0.4963.
The estimated slope was slightly lower than that of the modified Theil–Sen estimator.

The proposed permutation procedure may use more information on the censored pairs
than the Theil–Sen estimator relying only known (dis)concordant pairs. In this example,
most of response variables were left censored (toward to 0). Accordingly, if the censoring
information was not fully considered in the analysis, the slope would be overestimated. In
this sense, it was not surprising that the estimated slope which was smaller than that of
the Theil–Sen estimator. According to Eq. (6) and (7), the 95% C.I. was approximately
(0.2045,0.7615) for this example. As pointed out inAkritas et al. (1995), these slopes were
significantly smaller than 0.74 obtained byHeckman et al. (1989). This confirmed their
conclusion that Seyfert galaxies had an excess radio emission when compared to normal
galaxies.

5. Conclusion

This paper proposed a permutation procedure which is applicable to a wide
class of censoring problems. The proposed permutation procedure provided a modifica-
tion of the KT statistics to censored data, using samples from the conditional distribution
P (�(AXY )|(X,U), (Y, V )). Applications of the permutation procedure to two well known
problems, testing independence in bivariate censored data and estimating regression slope
with doubly censored data, were throughly discussed. Especially, when estimating a regres-
sion coefficient with doubly censored data, the permutation procedure was superior to the
modified Theil–Sen estimator proposed byAkritas et al. (1995)in terms of MSE.
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