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ABSTRACT

The differential entropy is importantly used in many disciplines, where the estimation of

entropy is often the main research objective or the first step toward it. To estimate entropy,

plug–in estimators, such as histogram based entropy estimators or kernel based entropy

estimators, are commonly used. Especially, though the histogram itself performs poorly

in estimating density, the histogram based entropy estimator is often employed due to its

computational benefit. Much efforts have been made to understand the properties of the

histogram based entropy estimator theoretically, but most of such efforts are restricted to the

case of independently and identically distributed (IID) samples. In this paper, we show that

two histogram–based entropy estimators by Gyórfi and van der Meulen (1987) are almost

surely consistent when samples are from a φ− mixing process. A limited simulation study

is implemented to compare those two estimators and to investigate their performance for

varying intensity of dependency. In addition, we discuss the extension of
√

n−consistency

of the estimators in IID setting by Hall (1993) to the case of dependent samples.

MATHEMATICA SUBJECT CLASSIFICATION: Primary 62G05; Secondary 62G20.
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1. INTRODUCTION

Let f(x) be an unknown probability density function with x ∈ Rd. The differential entropy

functional H(f), defined by − ∫∞
−∞ f(x) log f(x)dx, is used in many disciplines. To list some

representative examples in engineering, the normality of observed signal can be tested using

the maximal entropy property of the normal distribution (among distributions that have the

same variance) (Vasicek, 1976; Dudewicz and van der Meulen, 1981); the error exponents

in binary decision problems are functions of the entropy of the sources (Cover and Thomas,

1991); and, entropy can be used to recover several independent sources from sole observations

of the signal (Bercher and Vigan, 2000). In these examples, estimating entropy functional is

often the main research objective or the first step toward it.

Let X1, X2, . . . , Xn be independently and identically distributed (IID) random variables

taking values in Rd with the density function f(x) and the distribution function F (x). To

estimate H(f), several methods have been proposed. When d = 1, based on the other

representation of the entropy

H(f) =

∫ 1

0

log
{ d

dp
F−1(p)

}
dp,

Vasicek (1975) proposed the estimator

Hv
mn =

1

n

n∑
i=1

log
{ n

2m

(
x(i+m) − x(i−m)

)}
,

where x(1) ≤ x(2) ≤ · · · ,≤ x(n) are the order statistics and m is the positive integer with

m/n → 0 and m →∞.

Plug–in estimators are also commonly used which are defined by

Hn1 = −
∫

An

f̂n(x) log f̂n(x)dx (1)

or by

H2n = −
n∑

i=1

log f̂n(Zi)dx (2)

with An → Rd as n →∞ and
{
Zi

}n

i=1
are IID samples from f . Here, several different choices

of the nonparametric function estimator f̂n are suggested in the previous literature. The two
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most popular are the kernel estimator (Prakasa Rao, 1983; Joe, 1989; Hall and Morton,

1993; Eggermont and LaRiccia, 1999) and the histogram estimator (Gyórfi and van der

Meulen, 1987). Hall (1993) shows the
√

n consistency of both the histogram based entropy

estimator (H1n) and the kernel based entropy estimator under some regularity conditions to

f . Eggermont and LaRiccia (1999) suggest using the double exponential kernel for f̂n in the

kernel based entropy estimator and show the asymptotic normality of H1n. On the other

hand, the histogram is also popularly employed as a nonparametric density estimator since

it allows an explicit expression of the finial estimate unlike the kernel denisty estimators;

thus, it does not require the numerical integration in (1). Gyórfi and van der Meulen (1987)

propose the histogram based entropy estimators and show almost surely (a.s.) consistency

under the finiteness of H(f) which is quite minimal.

Finally, Grassberger (1996) suggests an estimator for finite alphabets based on the deep

connection between the entropy rate of a stationary ergodic process and the asymptotic

behavior of the longest match lengths along a process realization (Kontoyiannis, Algoet,

Suhov, and Wyner (1998) and references therein).

Unlike IID samples, the estimation of entropy functional from dependent samples are

mostly limited to the case of finite alphabets and even the performance of the simple his-

togram based entropy estimators are not well understood. However, it is generally conjec-

tured that a certain level of weakly dependency does not severely hurt the performance of

estimators. In compliance to this conjecture, this paper shows that the histogram based en-

tropy estimators in (1) and (2) are a.s. consistent when the samples are from an φ−mixing

process. A limited simulation study is implemented under the first order Gaussian autore-

gressive (AR) model with various AR coefficients. The simulation study shows that H1n

performs better than H2n in terms of the mean squared error (MSE). Both estimators are

negatively biased as pointed out in Hall and Morton (1993) (see Table 1 in their paper) and

perform worse as the magnitude of the dependence increases.

The remainder of the paper is organized as follows. Section 2 provides the definitions

of various mixing processes and some preliminary results which will be used in showing the
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main results. Section 3 presents and proves the main results on the consistency of H1n and

H2n. A limited simulation study is implemented to investigate the finite sample performance

of both estimators in Section 4. Finally, Section 5 discusses the extension of
√

n− consistency

of H1n in IID samples by Hall (1990) to dependent samples.

2. PRELIMINARIES

Let
{
Xi

}n

i=1
be a sequence of random variables defined on a probability space

(
Ω,F ,P

)
. Let

A and B be sub-σ fields of F , and let L2

(A)
be a set of all A− measurable random variables

with finite second moments. Define the measure of dependence

φ
(A,B)

= sup
A∈A,B∈B,P(A)>0

∣∣P(
B

∣∣A)−P
(
B

)∣∣

and

ρ
(A,B)

= sup
X∈L2(A),Y ∈L2(B)

∣∣EXY − EX · EY
∣∣

√
VarX · VarY

.

Based on the above dependence measures, φ−mixing and ρ−mixing are defined as follows:

Definition 1. A sequence
{
Xn, n ≥ 1

}
is a φ−mixing process if φ(n) = supk∈N φ

(Fk
1 ,F∞

n+k

)

decreases to 0, as n →∞, where F b
a = σ

(
Xa, Xa+1, . . . , Xb

)
.

Further, define a regular φ−mixing process {Xi}∞i=1 as a φ− mixing process with mixing

rates satisfying φ
(
m(n)

) ·n/
m(n) ∼ o(1) and m(n)

/
n ∼ o(1) for some sequence {m(n)}∞n=1.

Definition 2. A sequence
{
Xn, n ≥ 1

}
is a ρ−mixing process if ρ(n) = supk∈N φ

(Fk
1 ,F∞

n+k

)

decreases to 0, as n →∞, where F b
a = σ

(
Xa, Xa+1, . . . , Xb

)
.

The following lemma is from Lemma 1.2.8 in Lin and Lu (1996) with p = q = 2, and it

shows that ρ(n) ≤ 2φ1/2(n). Thus, every φ−mixing process is a ρ−mixing process.

Lemma 1. Let
{
Xi

}∞
i=1

be a φ−mixing sequence, X ∈ L2

(Fk
−∞

)
and Y ∈ L2

(F∞
k+n

)
. Then,

∣∣EXY − EX · EY
∣∣ ≤ 2

(
φ(n)

)1/2(
EX2

)1/2(
EY 2

)1/2
(3)
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The following generalization of Bernstein inequality to φ−mixing processes was proved

by Columbo (1984); Carbon (1983) also proved and a similar result on α−mixing. More

details on various mixing conditions can be found in Lin and Lu (1996).

Lemma 2. (Bernstein inequality for a φ−mixing sequence)

Let Xi, i ≥ 1, be a φ−mixing sequences satisfying EXi = 0, |Xi| ≤ B, E|Xi| ≤ L, and

EX2
i ≤ V for all i ∈ N. Set

φm =
m∑

i=1

φ(k) for all m,

where {φ(k)}∞k=1 are the mixing coefficients which are independent of n. Then for every ε > 0

and every n

P
{∣∣∣

n∑
i=1

Xi

∣∣∣ > ε
}
≤ c · exp{−αε + α2nC},

where C = 6
(
V + 4LBφ(m)

)
and c = 2 exp{3e1/2nφm/m}, where α and m are respectively

any positive real and integer values less than n verifying (α · m · B) ≤ 1
4
. The number

α, m,B, L, and V may also depend on n.

Consider a sequence of partitions of Rd Pn = {Anj, j = 1, 2, · · · , kn}, n ≥ 1, where

λ
(
Anj

) ∈ (0,∞) and Anj is the Borel set in Rd for all n and j. Here, λ is the Lebesgue

measure on Rd. For A ∈ Rd, let

µn

(
A

)
=

n∑
i=1

I
(
Xi ∈ A

)/
n

and µ
(
A

)
be its expectation ∫

A

f(x)dx.

Then, the histogram density estimator by the partition Pn and its expectation becomes,

respectively,

fn(x) = µn

(
Ani

)/
λ(Ani) and gn(x) = Efn(x) =

∫

Ani

f(x)dx
/

λ(Ani), if x ∈ Ani. (4)

The following lemmas are extensions of the results in Gyórfi and van der Meulen (1987)

to a stationary φ−mixing sequence
{
Xi

}∞
i=1

.

5



Lemma 3. If H(f) is finite and limn→∞ hn = 0 where hn = λ
(
Ani

)
, then

lim
n→∞

−
∑

i

µ(Ani) log
(
µ(Ani)

/
λ(Ani)

)
= H

(
f
)

where µ is the probability measure of a single observation X1.

Lemma 4. Let

D
(
f1||f2

)
=

∫ ∞

−∞
f1(x) log

(
f1(x)

/
f2(x)

)
dx

be the informational divergence of f1 with respect to f2, which is well defined if f1(x) = 0

whenever f2(x) = 0. Then

∫ ∣∣∣ log
(
f1(x)

/
f2(x)

)∣∣∣f1(x)dx ≤ D
(
f1||f2

)
+ 23/2 log e

√
D

(
f1||f2

)
. (5)

Lemma 5. For each ε > 0 and every set A, there exist a positive γ satisfying

P
(∣∣∣ log

(
µ(A)

/
µn(A)

)∣∣∣ > ε
)
≤ exp

(− γ · n)

Proof. From Equation (2.3) in Gyórfi and van der Meulen (1987),

{∣∣∣ log
(
µ(A)

/
µn(A)

)∣∣∣ > ε
}
∈

{∣∣µn(A)− µ(A)
∣∣ > µ(A)(1− 2−ε)

}
.

Hence,

P
(∣∣∣ log

µ(A)

µn(A)

∣∣∣ > ε
)

≤ P
(∣∣µn(A)− µ(A)

∣∣ > µ(A)(1− 2−ε)
)

≤ c · exp
{
n · (− αε′ + α2nC

)}
, (6)

where ε′ = µ(A)(1− 2−ε). c and C are defined as in Lemma 2 with B = L = 1. Therefore,

by choosing a sufficiently small α, Equation (6) is smaller than exp
(−γn

)
for some positive

γ.

Finally, the following lemma is a version of Abou-Jaoude (1976) for φ−mixing processes,

which is proved using a generalized Bernstein inequality (Lemma 2).

6



Lemma 6. Suppose {Xi}∞i=1 is a regular φ−mixing process. Let Pn = {Anj, j = 1, 2, · · · , kn}, n ≥
1, be a partition of Rd and let σ

(Pn

)
be the σ−algebra generated by Pn. Let A be a measurable

set with 0 < λ
(
A

)
< ∞. Assume that (i) there exists An ∈ σ(Pn

)
such that λ

(
A∆An

)
< ε

for all sufficiently large n and for every ε > 0, and (ii)

sup
S∈Rd

lim sup
n→∞

λ

( ⋃

λ
(

Anj∩S
)
≤hn

Anj ∩ S

)
= 0.

for a sequence hn ≈ O(1/n). Then,

P

( ∫ ∣∣∣fn(x)− f(x)
∣∣∣dx > ε

)
≤ exp

(− γ · n · h2
n

)
, for some γ > 0. (7)

Proof. Let S be a fixed compact set in Rd, Fn =
{
i

∣∣ λ
(
Ani

) ≤ (1 + ε)hn

}
, and gn(x) be

the expectation of fn(x) as defined in (4). Note that
∫ ∣∣gn − f

∣∣ is a deterministic sequence

converging to 0, which becomes arbitrary small by choosing a sufficiently large n. Thus,

from ∫ ∣∣∣fn(x)− f(x)
∣∣∣dx ≤

∫ ∣∣∣gn(x)− f(x)
∣∣∣dx +

∫ ∣∣∣fn(x)− gn(x)
∣∣∣dx,

it suffices to show
∫ ∣∣fn − gn

∣∣ converges to 0 exponentially fast in probability.

As in Theorem 3.2. of Devroye and Gyórfi (1984) (p 20),

∫ ∣∣∣fn(x)− gn(x)
∣∣∣dx ≤

∑
j∈Fn

∣∣∣µn(Anj)− µ(Anj)
∣∣∣ + 2 · µ(Cn) +

∣∣∣µn(Cn)− µ(Cn)
∣∣∣,

where Cn =
⋃

j∈Fc
n
Anj. Thus,

P

( ∫ ∣∣∣fn(x)− gn(x)
∣∣∣dx > 3ε

)
≤

∑
j∈Fn

P

(∣∣∣µn(Anj)− µ(Anj)
∣∣∣ >

ε

|Fn|
)

+ P

(∣∣∣µ(Cn)
∣∣∣ >

ε

2

)
+ P

(∣∣∣µn(Cn)− µ(Cn)
∣∣∣ > ε

)
.

Using Lemma 2,

P

(∣∣∣µn(Anj)− µ(Anj)
∣∣∣ >

ε

|Fn|
)

≤ c · exp
{
− α

εn

|Fn| + α2 · n · C
}

= exp
(
− γ0 · n

/
|Fn|2

)
,
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where C = 6(2 + 16φm), c = 2 · exp
(
3 · e1/2 · n · φm/m

)
, and α < ε

/(
C ·

∣∣Fn

∣∣). It is easy

to show that µ
(
Cn ∩ S

)
is a deterministic function decreasing to 0 from (ii). The absolute

continuity of µ with respect to λ can also be shown. Thus, µ(Cn) = µ(Cn ∩ S
)
+ µ(Cn ∩ Sc)

decreases to 0 as n → ∞, and P
(∣∣µ(Cn)

∣∣ > ε
/
2
)

= 0, for all sufficiently large n. Finally,

noting that
∣∣Fn

∣∣ ≤ ∣∣Pn

∣∣,

P

( ∫ ∣∣∣fn(x)− gn(x)
∣∣∣ > 3ε

)
≤

(∣∣Fn

∣∣ + 1
)

exp
(
− γ0 · n

/∣∣Fn

∣∣2
)

≤ exp
(− γ1 · n

/∣∣Pn

∣∣2)

≤ exp
(− γ1 · n · h2

n

)
. (8)

The inequality in (8) is from
∣∣Pn

∣∣ · hn < 1 and γ1 is chosen to be sufficiently smaller than

γ0.

The following lemma is from Lemma 2.2.6 in Lin and Lu (1996) and will be used in

extending the
√

n−consistency of the histogram based entropy estimator by Hall and Morton

(1993) to that in dependent samples (see Discussion).

Lemma 7. Let
{
Xn

}∞
n=1

be a stationary ρ−mixing sequence such that

EXn = 0, E|Xn|q < ∞ with q ≥ 3, ES2
n ≤ nhn · EX2

n,

where Sn = X1 + X2 + · · ·+ Xn and hn satisfies

max
(
h
(
[n/2]

)
, h

(
n− [n/2]

)) ≤ θ · h(
n
)

and h(n) ≥ 1

C
exp

{
− C

[log n]∑
i=0

ρ2/q
(
2i

)}

with 0 < θ < 21/3 and for some C > 0. Then, there exists a constant K, such that

E
∣∣Sn

∣∣q ≤ K

{(
n · h(n) · EX2

1

)q/2
+ n exp

{
K

[log n]∑
i=1

ρ
(
2i

)} · E
∣∣X1

∣∣q
}

. (9)

3. HISTOGRAM BASED ENTROPY ESTIMATORS

This section proves that two entropy estimators in Gyórfi and van der Meulen (1987) are still

consistent when
{
Xi

}n

i=1
is a regular φ−mixing process. The overall structure of the proof
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follows that of Gyrófi and van der Meulen (1987) with a generalized Bernstein inequality

(Lemma 2).

Two histogram based entropy estimators were proposed by Gyrófi and van der Meulen

(1987) for IID samples
{
Xi

}n

i=1
. First, let f̂n(x) be the histogram based density estimator

based on the partition Pn

{
An1, An2, · · ·

}
which is defined in (4). When plugging f̂n(x) into

(1), H1n becomes

H1n = −
∑
i∈Fn

µn(Ani) · log

(
µn(Ani)

λ(Ani)

)
, (10)

where Fn =
{
i : µn(Ani) ≥ anhn

}
with a sequence

{
an

}∞
n=1

deceasing to zero. Second, de-

compose the samples X1, . . . , Xn into two subsamples Y =
{
Yi

}[n/2]

i=1
and Z =

{
Zi

}[n/2]

i=1
, where

Yi = Xi and Zi = X[n/2]+i for i = 1, 2, . . . ,
[
n
/
2
]
. Subsequently, compute the histogram den-

sity estimate using
{
Zi

}[n/2]

i=1
and approximate the numerical integration for evaluating the

entropy with the samples
{
Yi

}[n/2]

i=1
. Finally, the proposed second estimator becomes

H2n = − 1[
n
/
2
]

[n/2]∑
i=1

log f̂n(Yi) I
(
f̂n(Yi) > an

)
. (11)

In the remainder of the paper, although µn

( · ) in H1n and H2n are different, we use the

same notation for simplicity.

First, Theorem 1 extends the result of Gyórfi and van der Meulen (1987) to φ−mixing

processes.

Theorem 1. Under the assumptions (i) limn→∞ an = 0, (ii) limn→∞ hn = 0, and (iii) the

finiteness of
∑∞

n=1 exp
( − n · h2

n

)
(equivalently, the finiteness of

∑∞
n=1 exp

( − n · h2
n · a2

n

)
),

both H1n and H2n are a.s. consistent, when the observations
{
Xi

}n

i=1
are from a regular

φ−mixing process.

Proof. We first show the convergence of H1n. As in Gyrófi and van der Meulen (1987,1991),

9



H1n are represented as a sum of four components U1n,V1n,W1n, and Z1n, where

U1n =
∑
i∈Fn

{− µn(Ani) + µ(Ani)
} · log

(
µn(Ani)

λ(Ani)

)

V1n =
∑
i∈Fn

µ(Ani) ·
{

log µ(Ani)− log µn(Ani)
}

W1n =
∑
i∈Fc

n

µ(Ani) ·
{

log µ(Ani)− log λ(Ani)
}

Z1n =
∑

i

µ(Ani) ·
{

log λ(Ani)− log µ(Ani)
}−H(f).

It suffices to show that each component a.s. converges to 0. Here, the last two components

W1n and Z1n are irrelevant to observations and, accordingly, their a.s. convergence to 0

follows from the case of IID sample in Gyrófi and van der Meulen (1987). Thus, we only

show the convergence of U1n and V1n in the following.

First, we show that U1n converges to 0 a.s. Simple arithmetic shows

∣∣∣U1n

∣∣∣ ≤ max
j∈Fn

∣∣∣∣
µn(Anj)

µ(Anj)
− 1

∣∣∣∣×
∑
i∈Fn

µ(Anj) ·
∣∣∣∣ log

(
µn(Ani)

λ(Ani)

)∣∣∣∣ ≡ αn × βn, (12)

where we denote the first component and the second component of right-hand side in (12)

be αn and βn, respectively. Hence, it suffices to show that αn converge to 0 a.s. and βn

converges to H
(
f
)
. To show the convergence of αn, applying Lemma 2 with a sufficiently

small α, we have

P
(
αn > ε

)
≤

∑
j∈Fn

P
(∣∣∣µn(Anj)− µ(Anj)

∣∣∣ > ε · µn(Anj)
)

≤ c ·
∣∣Fn

∣∣ · exp
(− γ2 · n · min

j∈Fn

µn(Anj)
2
)
,

≤ c · exp
(− γ3 n a2

n h2
n

)
,

for some positive γ2 and γ3. Therefore, Borel-Cantelli lemma with the assumption (iii)

proves that αn converges to 0 a.s. On the other hand, βn = β1n + β2n, where

β1n =

∣∣∣∣
∑
i∈Fn

µ(Ani) ·
{

log µ(Ani)− log λ(Ani)
}∣∣∣∣

β2n =

∣∣∣∣
∑
i∈Fn

µ(Ani) ·
{

log µn(Ani)− log µ(Ani)}
∣∣∣∣.
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Then, β1n converges to H
(
f
)

< ∞ by Lemma 3, and β2n is
∣∣Vn1

∣∣ whose convergence to 0

will be shown in the next.

The main step to show the convergence of V1n is the log–sum inequality, which shows

V1n ≤ log

(
1∑

i∈Fn
µ(Ani)

)
. (13)

Hence, it suffices to show
∑

i∈Fn
µ(Ani) → 1 a.s.; equivalently,

∑
i∈Fc

n
µ(Ani) → 0 a.s.

∑
i∈Fc

n

µ(Ani) = µ
( ⋃

i∈Fc
n

Ani

)

= µ
(
{x : f̂n(x) ≤ an}

)
=

∫
cfn(x)≤an

f(x)dx

≤
∫

1
2
f(x)≤an

f(x)dx +

∫
cfn(x)≤an≤ 1

2
f(x)

f(x)dx

≤
∫

1
2
f(x)≤an

f(x)dx + 2

∫ ∣∣f(x)− f̂n(x)
∣∣dx,

which converges to 0 a.s. from Lemma 6 and assumption (i).

To show the convergence of H2n, again note H2n = U2n + V2n + W2n + Z2n, where

U2n = H2n − E
(
H2n

∣∣Z)

V2n =

∫
cfn(x)≥an

(
log E

(
f̂n(x)

)− log f̂n(x)
)
f(x)dx

W2n =

∫
cfn(x)≤an

log f(x) · f(x)dx

Z2n =

∫
cfn(x)≤an

(
log f(x)− log E

(
f̂n(x)

)) · f(x)dx

Here, W2n, and Z2n do not depend on observations and V2n euqals V1n. Thus, it suffices to

show that U2n converges to 0 a.s.

Define

ψi = − log f̂n(Yi) · I
(
f̂n(Yi) ≥ an

)−
∫
cfn(x)≥an

(− log f̂n(x)
)
f(x)dx,

for i = 1, 2, · · · ,
[
n
/
2
]
. Then, since

{
Yi

}[n/2]

i=1
is a regular φ−mixing process,

{
ψi

}[n/2]

i=1
is also

regular φ−mixing. According to Lemma 2 with a sufficiently small α

P
(∣∣H2n − E

(
H2n

∣∣Z)∣∣ > ε
∣∣∣Z

)
= P

(∣∣∣
[n/2]∑
i=1

ψi

∣∣∣ ≥ nε

)
≤ exp

(− γ1 · n
)

(14)
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for some positive γ1. Finally, (14) has a finite sum and the Borel-Cantelli lemma shows that

U2n converges to 0 a.s.

4. SIMULATION STUDIES

In this section, we implement a limited simulation study to investigate the finite sample

performance of two histogram based entropy estimators, H1n and H2n.

First, the sequence {Xn}∞n=1 is generated from a Gaussian autoregressive process (AR)

Xn = ρXn−1 + εn, where εn is IID N
(
0, 1

)
, where two hundreds data sets are generated for

each for each n =200,400,600, 800, and 1000. In each n and ρ, H1n and H2n are evaluated

from 200 data sets. Finally, using those 200 estimators from the 200 generated data sets,

the mean squared error (MSE) and the bias of the estimators are evaluated (approximated).

The results are presented in Table 1. Second, the sequence is generated from a Gaussian AR

process with a coefficient of ρ where εn from IID N
(
0, 1−ρ2

)
. Here, the stationary marginal

distribution is N(0, 1) for every ρ ∈ (−1, 1). As earlier, the MSE and the bias are evaluated

for every n and ρ. The results are presented in Table 2.

From Table 1 and 2, we find that H1n performs better than H2n in every case. We can

also read that both estimators underestimate the true entropy and it is consistent with the

result in Hall and Morton (1993) which states that the bias of H1n based on IID samples

is negatively biased when the tails of the distribution are exponentially decreasing. Also,

the Gaussian distribution has the maximum entropy among distributions with the same

variance. Further note that the estimated density estimator is not Gaussian and may have

an entropy smaller than the true entropy. Finally, MSE and bias increase when ρ decreases

as expected. Table 1 shows that both MSE and bias seem to depend on true parameter

values, the conditional variance σ2, and the AR coefficient ρ. Especially, to see the single

effect of the AR coefficient, Table 2 fixes the variance of the marginal distribution as 1 and

shows that both the MSE and the bias still increase as ρ increases.

5. DISCUSSION
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We conclude the paper with a discussion on
√

n− consistency of H1n (when d = 1). Hall and

Morton (1993) proved it for IID samples under the regularity conditions to the underlying

density f . Here, we conjecture that under the same regularity conditions, Theorem 2.1 in

Hall and Morton (1993) may be extended to ρ−mixing sequences, which is

f > 0 on
(−∞,∞)

, f ′ exists and is continuous on
(−∞,∞)

,

and for constants c1, c2 > 0 and α1, α2 > 1, f ′(x) ∼ −c1α1x
−α1−1

and f ′
(− x

) ∼ −c2 · α2 · x−α2−1 as x → +∞.

The following notations will be used. Let P =
{
Ai

}∞
i=∞ be the partition of R, where

Ai =
(
(i − 1)h, ih]. Let Nk =

∑n
i=1 I

(
Xi ∈ Ak

)
and h, the bin size in the histogram, is in

Hn ≡
{
m−1 : m is an integer and nδ ≤ m ≤ n1−δ

}
for δ ∈ (0, 1/2). Define Uij = I

(
Xj ∈

Ai

)− pi with pi = P
(
X ∈ Ai

)
. Then, under suitable mixing rates to the observed ρ−mixing

process, we conjecture that

H1n ≡
n∑

i=1

log f̂n(Xi) =
1

n

n∑
i=1

log f(Xi

)
+ O

((
nh

)−1+(1/ min(α1,α2))
)
. (15)

For brevity, we indicate and discuss only those where the proof differs significantly from that

of Theorem 4.1 in Hall (1990) which is the source of Theorem 2.1 in Hall and Morton (1993).

As in Theorem 4.1 in Hall (1990),

H1n =
1

n

n∑
j=1

log

(
f̂n(Xj)

f(Xj)

)
= S1 + S2,

where S1 ≡
(
1
/
n
) ∑

j log
{
f̂n(Xj)

/
f(Xj)

}
and S2 ≡

(
1
/
n
) ∑

j log
{
µ(Xj)

/
f(Xj)

}
. Since

S2 does not depend on samples
{
Xi

}n

i=1
, S2 ≈ O

(
h2

)
+ op

{
(nh)−1+1/α1 + (nh)−1+1/α2 + h2

}

as in Hall (1990). Thus, only S1 will be considered below.

In proving the rate of S1, it suffice to get the same rates of §kl and Tkl for every (k, l)

with observed ρ−mixing processes. Subsequently, to get the same rates of Skl, Tkl, and their

expectations with those in Hall (1990), it again may suffice to show that:

(1) for every k,

E
∣∣Ni − npi

∣∣k ≈ EI

∣∣Ni − npi

∣∣k,

13



where EI represents the expectation under the assumption that
{
Xi

}n

i=1
are indepen-

dent of each other.

(2) For every k,

E
∣∣Z1

∣∣2k ≈ EI

∣∣Z1

∣∣2k
, and E

∣∣Z2

∣∣2k ≈ EI

∣∣Z2

∣∣2k

where

Z1 =
n∑

j=1

n∑
m=1

(k,l)∑
i

{
UijUim − E

(
UijUim

)}

Z2 =

(k,l)∑
i

{(
Ni − npi

)3 − E
(
Ni − npi

)3}

Suppose the ρ−mixing process has a geometric mixing rate ρ(n) = qn for some 0 < q < 1.

Then,

ES2
n = n · EX2

1 + 2 ·
∑
i<j

ρ
(|i− j|)

= n · EX2
1 + O

(
1
)
.

Thus, h(n) in Lemma 5 is O
(
1
)

and (1) is satisfied. However, it is still unknown what mixing

rate can result in (2).
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H1n H2n

(ρ, σ) (0.1, 1.0) (0.5, 1.0) (0.9, 1.0) (0.1, 1.0) (0.5, 1.0) (0.9, 1.0)

n = 200 Bias −0.1554 −0.1888 −0.3891 −0.2631 −0.3705 −1.0818
√

MSE 0.1632 0.1980 0.4063 0.2863 0.3895 1.0983

n = 400 Bias −0.0847 −0.0996 −0.2133 −0.1037 −0.1345 −0.5276
√

MSE 0.1265 0.1598 0.5558 0.0930 0.1090 0.2322

n = 600 Bias −0.0578 −0.0682 −0.1469 −0.0577 −0.0769 −0.2787
√

MSE 0.0830 0.1004 0.3163 0.0646 0.0778 0.1657

n = 800 Bias −0.0450 −0.0505 −0.1125 −0.0359 −0.0511 −0.1888
√

MSE 0.0515 0.0595 0.1341 0.0615 0.0739 0.2202

n = 1000 Bias −0.0340 −0.04219 −0.1000 −0.02705 −0.0469 −0.1387
√

MSE 0.0406 0.0497 0.1195 0.0481 0.0657 0.1711

Table 1: Performance of H1n and H2n. Both bias and MSE in each cell are evaluated from

200 data sets. The conditional variance σ2 is fixed as 1 in every cell.
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H1n H2n

(ρ, σ) (0.1, 1.01) (0.5, 1.33) (0.9, 5.26) (0.1, 1.01) (0.5, 1.33) (0.9, 5.26)

n = 200 Bias −0.1590 −0.1623 −0.2200 −0.2806 −0.2867 −0.3800
√

MSE 0.1673 0.1729 0.2505 0.30503 0.3107 0.4271

n = 400 Bias −0.0829 −0.0830 −0.1369 −0.0901 −0.1041 −0.1462
√

MSE 0.0901 0.0934 0.1727 0.1198 0.1321 0.2098

n = 600 Bias −0.0565 −0.0630 −0.0787 −0.0488 −0.0626 −0.0660
√

MSE 0.0633 0.0728 0.1134 0.0743 0.0940 0.1360

n = 800 Bias −0.0469 −0.0470 −0.0658 −0.0452 −0.0426 −0.0493
√

MSE 0.0529 0.0578 0.0994 0.0629 0.0665 0.1095

n = 1000 Bias −0.0352 −0.0382 −0.0557 −0.0282 −0.0335 −0.0377
√

MSE 0.0416 0.0474 0.0819 0.0458 0.0545 0.0904

Table 2: Performance of H1n and H2n. Both bias and MSE in each cell are evaluated from

200 data sets. The conditional variance σ2 is set to 1− ρ2 in each cell.
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