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Abstract

Contingency tables are often used to display the multivariate frequency distribution of variables

of interest. Under the common multinomial assumption, the first step of contingency table anal-

ysis is to estimate cell probabilities. It is well known that the unconstrained Maximum Likelihood

Estimator (MLE) is given by cell counts divided by the total number of observations. However,

in the presence of (complex) constraints on the unknown cell probabilities or their functions, the

MLE or other types of estimators may often have no closed form and have to be obtained nu-

merically. In this paper, we focus on finding the MLE of cell probabilities in contingency tables

under two common types of constraints: known marginals and ordered marginals/conditionals,

and propose a novel approach based on geometric programming. We present two important

applications that illustrate the usefulness of our approach via comparison with existing meth-

ods. Further, we show that our GP-based approach is flexible, readily implementable, effort-

saving and can provide a unified framework for various types of constrained estimation of cell

probabilities in contingency tables.
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1 Introduction

Let g(x) be a monomial function defined in the form of

g(x) = cxa11 x
a2
2 · · ·x

an
n

where c > 0, ai ∈ R and xi ∈ R+ for 1 ≤ i ≤ n. Let f(x) be a posynomial function defined as the

sum of one or more monomials
f(x) =

K∑
k=1

ckx
a1k
1 xa2k2 · · ·xank

n .

Then a special type of convex optimization problem, called a geometric program (GP), can be

described as follows:
min f0(x)

s.t. fi(x) ≤ 1 i = 1, · · ·m, (1.1)

gj(x) = 1 j = 1, · · · , p,

where x = (x1, · · · , xn) is the row vector containing all (positive) optimization variables, fi’s are

posynomial functions and gj ’s are monomial functions for all i = 0, · · · ,m and j = 1, · · · , p.

Geometric programming is a common technique for solving the above optimization problem.

It was first introduced by Duffin et al. (1967). More recently, new methods have been developed

to solve large-scale GPs very efficiently and reliably (Nesterov and Nemirovsky 1994, Boyd et al.

2005). Since then, useful applications such as large digital/analog circuit designing, floor planning,

and wireless power control have emerged. As pointed out by Boyd et al. (2005), the new methods

have several advantages: (1) fast computing speed; (2) global optimal solution guaranteed for

any feasible GP; and (3) no extra human effort required (such as parameter tuning, starting point

selection, or initial guessing). These technical advances, combined with the wide availability of

software for implementation (e.g., a freeware named GGPLAB, Mosek, YALMIP), make geometric

programming even more useful for statisticians’ toolkit. Once GP modeling, i.e., formulating prob-

lems into the GP form (1.1), is done, which hardly requires any knowledge of technical details and

is conceptually simple, one has an effective and reliable way for solving a practical problem. For

detail about geometric programming, see Boyd et al. (2007) and Lim et al. (2009a).

Although it is less well known among statisticians than it should be, the idea of using geometric
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programming for constrained estimation has been adopted to solve several statistical problems in

the literature. For example, Alldredge and Armstrong (1974) considered GP-based estimation of

overlap sizes created by interlocking sampling schemes; Mazumdar and Jefferson (1983) used the

GP method for estimating gene frequencies or success probabilities when sums of independent

Bernoulli random variables are observed; Lim et al. (2009a) conducted GP modeling for estimating

survival functions subject to stochastic orderings, and then solved the problem by GP; and Lim

and Won (2012) proposed a GP-based method for estimating a concave ROC curve. However,

little work has been done by other researchers under the context of contingency tables, which

play an important role in summarizing and displaying categorical data. The only work that we

are aware of is Bricker et al. (1997), where GP-based approaches were proposed for estimating

cell probabilities in a two-way contingency table given positive/negative association (i.e., certain

inequality constraints on local odd ratios need to be posed) or in a one-way table with upper

bounds on ratios of cell probabilities. Clearly, this earlier application of GP to contingency tables is

restricted to specific and small problems, involving low-dimensional tables and monomial inequality

constraints only.

In this paper, we consider the use of geometric programming with contingency tables, to ad-

dress two important types of problems that occur frequently in practice. The first is estimating cell

probabilities with known marginals; and the second is estimating cell probabilities under order con-

straints on marginals/conditionals. We show that under the multinomial assumption, the problem

of finding the constrained maximum likelihood estimates can be solved via GP in various situa-

tions. As opposed to most existing work that handles one or two-way tables only, we thoroughly

examine distinctive situations in three-way contingency tables; and for higher dimensional tables,

we provide sufficient conditions, which guarantee that the problem can be handled using GP. In

addition, the problems we consider are more general and harder in nature than those in Bricker

et al. (1997), with useful applications from various fields, as will be discussed later. Through sim-

ulation and examples, we show that for sparse tables (i.e., a large number of cells have zero or

small counts), the GP method can provide higher estimation efficiency than Iterative Proportional

Fitting (IPF), which is known as raking in the context of contingency tables, the most popular al-
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gorithm for solving the first problem. Also, for the second problem, the existing algorithms, Pooled

Adjacent Violator or its variants (e.g., Barlow et al. 1972, Jewell and Kalbfleisch 2004), cannot

be used with tables of three ways or higher. When compared with the Newton-Raphson method

(NR, a well known general-purpose optimization method implemented via quadratic programming

in this work), it can run much faster besides providing improved estimation for sparse tables. Even

in cases where both methods can work well, the GP method is more attractive because of ease

of implementation; and there is no need for initial guessing and it can always guarantee a global

optimal solution to any feasible GP problem. By contrast, implementing NR may require effort

and advanced knowledge in optimization; and the performance of NR may rely on specification of

starting points. In some cases, even after many trials, NR can be still slow in convergence.

Our work is partly motivated by two scientific studies, which differ significantly in application ar-

eas. The first is to estimate the population mean from judgment post-stratification (JP-S) samples

with multiple rankers (e.g., MacEachern et al. 2004, Wang et al. 2006, Stokes et al. 2007, Frey

et al. 2007, Frey and Ozturk 2011), where estimation of cell probabilities needs to be done under

known one-dimensional marginal probabilities; and the second is to examine whether there exists

gender-based inequality in returns to education through analysis of a three-way table, where order

constraints on conditional probabilities arise naturally in this context. Both applications show the

usefulness of our GP-based approach. The Matlab code and data used in this paper are available

at the URL http://stat.snu.ac.kr/johanlim/gp_contingency_examples.html.

The paper is organized as follows. In Sections 2 and 3, we discuss our estimation of cell

probabilities in contingency tables with known marginals and with ordered marginals/conditionals,

respectively. Sections 4 and 5 present the two applications and numerical results. Section 6

discusses the general use of GP in contingency tables, including relevant previous work. Section 7

concludes the paper with discussion.
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2 Estimation under known marginal probabilities

The problem of estimating cell probabilities in contingency tables with known marginals has a

rich history in the literature. For example, Deming and Stephan (1940) mentioned that, in cen-

sus applications, one may often want to estimate probabilities from contingency tables when the

marginal probabilities are known from an established theory or a much larger sample. Imposing

such equality constraints can reduce estimation bias arising from non-responses and sampling

variability. Estimation methods using different objective functions had been proposed, such as

Maximum Likelihood, Minimum Discrimination Information, and Quasi-Bayes, mostly with focus

on two-dimensional tables; see Pelz and Good (1986) for a summary. Optimizing those objec-

tive functions with equality constraints generally has no closed-form solution and so needs to be

solved numerically. Deming and Stephan (1940) and Stephan (1942) proposed the well known

IPF procedure, also called “raking”, for estimating two or three-way tables, which iteratively ad-

justs column and row proportions to satisfy known marginals. This procedure is simple and fast,

as opposed to other existing numerical procedures (e.g., NR, steepest ascent/descent, Southwell

relaxation). Little and Wu (1991) compared several estimation methods in the analysis of two-way

contingency tables and concluded that raking was one of the top two winners. Bishop and Fien-

berg (1969) considered extension of raking for two-way contingency tables with zero counts. Also,

raking has been proved to converge to the Maximum Likelihood Estimator (MLE) when no empty

cells exist (Thompson, 1981). Moreover, it is possible to extend raking to higher dimensional tables

(e.g.,Ireland and Kullback 1968).

In this section, we propose a novel approach via geometric programming to find the MLE,

whose performance will be compared with that of raking through simulation and an empirical study

in Section 4. Although our discussion of GP modeling is based on the MLE, the approach can be

extended to other estimators, as will be discussed in Section 6. In what follows, we first analyze all

distinctive situations in three-way contingency tables, and then generalize the results to m−way

tables (m > 3) given certain sufficient conditions.
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2.1 Three-way contingency tables

Consider a r × s × t contingency table, where the three dimensions are associated with discrete

variables X1, X2 and X3, respectively. Let i index the ith value of X1, j index the jth value of

X2, and k index the kth value of X3. Let pijk denote the probability that an observation falls

in the (i, j, k)th cell, whose observed frequency is denoted by nijk in a sample of size n (i.e,∑
i,j,k nijk = n). Assuming these frequencies follow a multinomial distribution with parameters n

and pijks, the likelihood function is then proportional to

L ({pijk}) =
r∏
i=1

s∏
j=1

t∏
k=1

p
nijk

ijk , (2.1)

which is a monomial function of pijks.

For three-way contingency tables, there are two types of marginal probabilities that can be

known: one dimensional such as pi++ (i.e., some univariate information about X1 is known ) and

two-dimensional such as pij+ (i.e., some bivariate information about X1 and X2 is known). In

what follows, we show under three distinctive situations, the MLE of pijks can be computed via

geometric programming. Instead of maximizing the likelihood function L, we minimize the inverse

of L equivalently.

(i) All three sets of one-dimensional marginal probabilities are known. Here, the

optimization problem can be described as

minimize
∏r
i=1

∏s
j=1

∏t
k=1 p

−nijk

ijk ,

subject to
∑

j,k pijk = pi++, for i = 1, · · · , r,∑
i,k pijk = p+j+, for j = 1, · · · , s,∑
i,j pijk = p++k, for k = 1, · · · , t,

(2.2)

where pi++, p+j+ and p++k are positive constants satisfying
∑

i pi++ =
∑

j p+j+ =∑
k p++k = 1.

(ii) One set of one-dimensional marginal probabilities and the remaining two-dimensional

marginal probabilities are known. Without loss of generality, we can describe the

optimization problem as
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minimize
∏r
i=1

∏s
j=1

∏t
k=1 p

−nijk

ijk

subject to
∑

j,k pijk = pi++, for i = 1, · · · , r,∑
i pijk = p+jk, for j = 1, · · · , s, k = 1, · · · , t,

(2.3)

where pi.. and p.jk are all positive constants satisfying
∑

i pi++ =
∑

j,k p+jk = 1.

(iii) Any two sets of two-dimensional marginal probabilities are known. Without loss

of generality, we can describe the problem as

minimize
∏r
i=1

∏s
j=1

∏t
k=1 p

−nijk

ijk

subject to
∑

k pijk = pij+, for i = 1, · · · , r, j = 1, · · · , s,∑
j pijk = pi+k, for i = 1, · · · , r, k = 1, · · · , t,

(2.4)

where pij+ and pi+k are all positive constants satisfying
∑

j pij+ =
∑

k pi+k for 1, · · · , r

and
∑

ij pij+ =
∑

ik pi+k = 1.

Theorem 1. Changing all “=”s to “≤”s in the constraints, the optimization problem in any of the three

situations (i)-(iii) turns into a GP; and the GP is equivalent to the corresponding original optimization problem

in estimating the probabilities of all nonempty cells.

Proof. The GP relaxation (i.e., relaxing all “=” constraints s to the “≤”s) is based on the existence

of a pivotal cell when constraints in marginal probabilities are violated (i.e., some “<” instead of “=”

holds). Here, a pivotal cell is a cell whose probability can be adjusted to remove the violation to the

constraints. See Appendix A for a detailed proof that shows the existence of the pivotal cell.

Remarks:

1. There are redundant "=" constraints in (2.2)-(2.4). However, once each of the problems has

been converted to the corresponding GP, they are no longer redundant and must be kept

when solving the GP.

2. If all the observed counts are non-zero (i.e., no empty cells exist) in a contingency table, then

the optimal solution from the GP is also optimal for the original optimization problem we try to

solve. If there exist some empty cells, then we can find the optimal solution(s) to the original
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optimization problem in two steps: (i) solve the corresponding GP to get the estimates for

non-empty cells; (ii) plug in the estimates of non-empty cells into the equality constraints

in the original optimization problem and then solve the linear equations for the estimates of

empty cells. Note that the solution to the probabilities of empty cells may not be unique; and

unlike the raking method, the solution may not be zero for empty cells.

In practical situations, it is often the case that only some subset of the constraints is available in

each of the three situations discussed above. For example, in the first situation, only one or two

sets of one-dimensional marginal probabilities may be known.Or in the second and third situations,

only one set of two-dimensional marginal probabilities may be known. Or in all three situations,

an incomplete set of marginal probabilities may be known (e.g., pi++s may be known for some i,

not all i; pij+s may be known for some i and j instead of all possible (i, j) combinations). Note

that, when no sets are complete, the constraint
∑

i,j,k pijk = 1 must be present in the original

optimization problem. In such situations, GP modeling can be easily done in the same spirit; and

the proof of equivalence in estimating the probabilities of all nonempty cells is essentially the same

as before since the existence of the pivotal cell would not be affected. For example, for situation

(i), if the one-dimensional marginal probabilities are known for only some i’s, some j’s and some

k’s (say i ∈ A, j ∈ B and k ∈ C, where A, B and C are true subsets of the complete sets {1, · · · , r},

{1, · · · , s} and {1, · · · , t}, respectively). Then the original optimization problem is

minimize
∏r
i=1

∏s
j=1

∏t
k=1 p

−nijk

ijk

subject to
∑

j,k pijk = pi++, for i ∈ A,∑
i,k pijk = p+j+, for j ∈ B,∑
i,j pijk = p++k, for k ∈ C,∑
i,j,k pijk = 1.

Note that
∑

i,j,k pijk = 1 is equivalent to
∑

i∈Ac

∑
j,k pijk = 1 −

∑
i∈A pi++, or

∑
j∈Bc

∑
i,k pijk =

1−
∑

j∈B p+j+ or
∑

k∈Cc
∑

i,j pijk = 1−
∑

j∈C p++k. Then we can easily recognize the GP that is

equivalent to the problem above in estimating the probabilities of all nonempty cells:

7



minimize
∏r
i=1

∏s
j=1

∏t
k=1 p

−nijk

ijk

subject to
∑

j,k pijk ≤ pi++, for i ∈ A,∑
i,k pijk ≤ p+j+, for j ∈ B,∑
i,j pijk ≤ p++k, for k ∈ C,∑
i∈Ac

∑
j,k pijk ≤ 1−

∑
i∈A pi++;∑

j∈Bc
∑

i,k pijk ≤ 1−
∑

j∈B p+j+;∑
k∈Cc

∑
i,j pijk ≤ 1−

∑
j∈C p++k.

So far, we have shown that for three-way contingency tables with known marginal information,

nearly all cases can be converted to GPs, which can be solved very efficiently and reliably. There

is only one open case, in which all three sets of two-dimensional marginal probabilities are known;

that is, ∑
k pijk = pij+, for i = 1, · · · , r, j = 1, · · · , s,∑
j pijk = pi+k, for i = 1, · · · , r, k = 1, · · · , t,∑
i pijk = p+jk, for j = 1, · · · , s, k = 1, · · · , t,

(2.5)

where pij+, pi+k and p+jk are all positive constants satisfying
∑

ij pij+ =
∑

ik pi+k =
∑

jk p+jk =

1,
∑

j pij+ =
∑

k pi+k,
∑

i pij+ =
∑

k p+jk and
∑

i pi+k =
∑

j p+jk (i.e., all the constraints are

feasible). In this case, relaxing “=” to “≤” leads to a GP, which, as in the other cases discussed

above, was conjectured to be equivalent to the original optimization problem. Although much

efforts have been made, neither a proof to the equivalence nor a counterexample has been found.

So questions remain about whether the conjecture is true or not. However, this case has very

limited practical importance because the complete bivariate information for all the three variables

is rarely available in real situations. Still, one handy strategy is to solve the corresponding GP (by

simply changing all “=” to “≤ ” constraints), and then examine whether (2.5) is satisfied; If yes, we

have solved the problem.

2.2 Extension to multi-way contingency tables

In an m−way contingency table, there are m− 1 types of marginal probabilities, 1-dimensional to

m− 1 dimensional, resulting in 2m − 2 different marginal probabilities in total. Thus, the space for
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the possible combinations of known marginals can be enormous, which makes finding a general

approach that is workable in the entire space very difficult. In practice, low-dimensional marginal

probabilities are often easier to obtain and more comfortable to use than higher-dimensional ones,

especially for the one-dimensional ones that require only univariate information. Even when all

the known marginals are one-dimensional, there is no existing solution method that is generally

acceptable. As mentioned before, the popular raking method is fast but does not converge to the

true MLE for tables with empty cells (a problem widely present in tables of three dimensions or

higher); and the NR method can be extremely slow in convergence and requires human effort

per dataset. Below we show that the GP method can provide an effortless, reliable and efficient

solution for multi-way contingency tables when one-dimensional marginals are known.

Let ik index the ikth value of Xk, where ik ∈ {1, . . . , Ik} and k = 1, . . . ,m. When all m complete

sets of one-dimensional marginal probabilities are known, the MLE of {pi1...im} is the solution to

the problem

minimize
∏
i1,...,im

p
−ni1...im

i1...im
,

subject to
∑

i2,...,im
pi1...im = pi1+···+, i1 = 1, . . . I1,

· · ·∑
i1,...,im−1

pi1...im = p+···+im , im = 1, . . . Im.

(2.6)

Theorem 2. Suppose all the marginal constraints in (2.6) are feasible. Then changing all “=”s to “≤”s in the

constraints, (2.6) turns into a GP that is equivalent to (2.6) in estimating the probabilities of all nonempty cells.

Proof. It is a straightforward extension of the proof to Situation (i) in Section 2.1, in which we can

show the existence of a pivotal cell when any of the “≤” constraints in the GP is not tight.

In practice, it is rare that the one-dimensional marginal probabilities of all the corresponding

variables X1, . . . , Xm are known. However, even if one or more of them are missing from (2.6), the

existence of the pivotal cell would not be affected. Hence, when any subset of the one-dimensional

marginal probabilities is available, the MLE can be obtained via GP.

More generally, the above results are not restricted to one-dimensional marginal probabilities.

Theorem 3. Let A1, . . . , Aa be disjoint subsets of {1, . . . ,m}, and i(Ac
j) ≡ {′i′k, k /∈ Aj} be a set of index labels.

If any subset of the marginal probabilities
∑

i(Ac
1)
pi1...im , ...,

∑
i(Ac

a)
pi1...im is known and these constraints are
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feasible, then the problem of finding the MLE of cell probabilities is equivalent to the GP in estimating the

probabilities of all nonempty cells, which is obtained by changing all "=" constraints to "≤" constraints in

the original optimization problem (with each equality constraint expressed in the least possible number of

optimization variables).

Take a simple example. If A1 = {1, 3}, A2 = {2, 4}, and A3 = {5} in a five-way contingency

table, then i(Ac1) = {′i2 ′,′ i4 ′,′ i5 ′}, i(Ac2) = {′i1 ′,′ i3 ′,′ i5 ′} and i(Ac3) = {i1 ′,′ i2 ′, i3 ′,′ i4 ′}. Theo-

rem 3 tells that if any subset of {pi1+i3++, p+i2+i4+, p++++i5 , ∀i1, i2, i3, i4, i5}’ is available, the MLE

can be obtained via GP because the existence of the pivotal cell is guaranteed by the disjointness

of A1, A2 and A3.

We shall mention that cases of disjoint index sets, as described in Theorem 3, cover important

applications, of which a recent example is given in Section 4 (i.e., application to a relatively new

method of data collection, judgment post-stratification with multiple rankers). Note that raking is

possible in more general cases. However, its application to high-dimensional tables is greatly

limited by the fact that it cannot properly handle sparse tables while the problem of empty cells

becomes prevalent as the dimension increases. By contrast, the GP-based approach does not

have this problem and can greatly enhance the efficiency of estimation in the presence of empty

cells, as indicated by the results reported in Table 1 (see Section 4.2).

3 Estimation under ordered marginal/conditional probabilities

In contingency tables, variables and their marginal or conditional probabilities can be naturally

ordered (a motivating example is given in Section 5). Several authors developed algorithms for

estimating multinomial parameters under order constraints on the probabilities of Y or on the

conditional probabilities of Y given X (e.g., Barlow et al. 1972, Jewell and Kalbfleisch 2004).

However, the work is limited to one or two-way tables only, and these existing algorithms cannot

be used with higher-way tables. As in Section 2, we begin with GP-based estimation in three-way

tables, and then discuss the extension to higher-dimensional tables.
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3.1 Three-way contingency tables

Suppose that the marginal probabilities pi++s or conditional probabilities pjk|is are ordered in

accordance with the values of X1 indexed by i, i ∈ I = {1, . . . , r}. That is,

p1++ ≤ p2++ ≤ · · · ≤ pr++, (3.1)

or

pjk|1 ≤ pjk|2 ≤ · · · ≤ pjk|r for (j, k) ∈ C. (3.2)

In (3.2), C is assumed to be a true subset of J × K (i.e., C ⊂ J × K), where J = {1, . . . , s}

and K = {1, . . . , t} are index sets for X2 and X3. Note that if C = J × K, then (3.2) implies

pjk|1 = pjk|2 = · · · = pjk|r for all j and k because
∑

jk pjk|i = 1 for all i, representing a trivial

case. We further assume some very mild regularity conditions under each order constraint. That

is, under (3.1), we assume that for each i, ∃(j, k) s.t. nijk > 0; under (3.2), we assume that for

each i, ∃(j, k) /∈ C. s.t., nijk > 0. Thus, under these regularity conditions, the likelihood function to

be maximized here is given by (2.1), subject to the order constraints (3.1) or (3.2), plus the equality

constraint
∑

ijk pijk = 1.

To do GP modeling, we re-parameterize the likelihood function (2.1) with pjk|i and pi++, namely

L ({pijk}) =

 r∏
i=1

s∏
j=1

t∏
k=1

p
nijk

jk|i

( r∏
i=1

p
ni++

i++

)
. (3.3)

The equality constraint
∑

ijk pijk = 1 is then equivalent to∑
jk

pjk|i = 1 and
∑
i

pi++ = 1, for i = 1, 2, . . . , r. (3.4)

Theorem 4. Under (3.1), the optimization problem is equivalent to the following GP with optimization vari-

ables {pjk|i, pi++},

minimize
(∏r

i=1

∏s
j=1

∏t
k=1 p

−nijk

jk|i

)(∏r
i=1 p

−ni++

i++

)
subject to

∑
jk pjk|i ≤ 1, for i = 1, · · · , r,∑
i pi++ ≤ 1,

p1++ ≤ p2++ ≤ · · · ≤ pr++

(3.5)

Proof. See Appendix B.
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Theorem 5. Under (3.2), the optimization problem is equivalent to the following GP with optimization vari-

ables {pjk|i, pi++},

minimize
(∏r

i=1

∏s
j=1

∏t
k=1 p

−nijk

jk|i

)(∏r
i=1 p

−ni++

i++

)
subject to

∑
jk pjk|i ≤ 1, for i = 1, · · · , r,∑
i pi++ ≤ 1,

pjk|1 ≤ pjk|2 ≤ · · · ≤ pjk|r. for (j, k) ∈ C

(3.6)

where C ⊂ J ×K.

Proof. See Appendix C.

3.2 Extension to multi-way contingency tables

Suppose a subset of the r−dimensional marginal probabilities indexed by i1, . . . , ir, say pi1···ir+···+ =∑
ir+1,...,im

pi1...im , r < m, is ordered in some way. Then, the MLE of {pi1...im} is the solution to

minimize
∏
i1,...,im

p
−ni1...im

i1...im
,

subject to
∑

i1,...,im
pi1...im = 1,

and order constraints on pi1···ir+···+s.

(3.7)

As in Section 3.1, we re-parameterize (3.7) using the marginal probabilities pi1···ir+···+ and the

corresponding conditional probabilities pir+1···im|i1···ir = pi1...im/pi1···ir+···+, so that the optimization

problem becomes

minimize
∏
i1,...,im

[
pir+1···im|i1···ir · pi1···ir+···+

]−ni1...im

subject to
∑

ir+1,...,im
pir+1···im|i1···ir = 1,∑

i1,...,ir
pi1···ir+···+ = 1, for every (i1, . . . , ir),

and order constraints on pi1···ir+···+s.

(3.8)

Similarly, if a subset of the r−dimensional conditional probabilities pir+1···im|i1···ir is ordered

according to the values of X1, . . . , Xr in some way. Then, the MLE is the solution to
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minimize
∏
i1,...,im

[
pir+1···im|i1···ir · pi1···ir+···+

]−ni1...im

subject to
∑

ir+1,...,im
pir+1···im|i1···ir = 1,∑

i1,...,ir
pi1···ir+···+ = 1, for every (i1, . . . , ir),

and order constraints on pir+1···im|i1···irs

for (ir+1, . . . , im)∈ C , C ⊂ Ir+1 × · · · × Im .

(3.9)

Under very mild regularity conditions (similar to those described in Section 3.1), we introduce

the following theorem.

Theorem 6. Changing all “=”s to “≤”s in the constraints, (3.8)/(3.9) turns into a GP that is equivalent to

(3.8)/(3.9).

We rely on the same arguments made for Theorem 4/5 to relax the equality constraints in

(3.8)/(3.9). The proof for Theorem 6 is omitted for brevity.

Finally, we note that the above extension is only for one set of r−dimensional marginal order

constraints. It might not be applicable to multiple sets of multi-dimensional marginal order con-

straints. The difficulty in obtaining the MLE with K sets of ordered marginal probabilities arises

from expressing the likelihood function as a product of different sets of the marginal probabilities.

4 Application to JP-S with multiple rankers

4.1 Background

Judgment post-stratification (JP-S) sampling was introduced by MacEachern et al. (2004) as an

alternative to ranked set sampling (Chen et al. 2006; McIntyre 2005) for studying the character-

istics (such as mean, variance and distribution, etc) of some variable, say Y , which is expensive

to quantify, but relatively cheap to rank by judgement. To obtain a JP-S sample, a simple random

sample (SRS) of n units is first drawn from a population and the value of Y is recorded for each,

denoted yi, 1 ≤ i ≤ n. For each measured unit i, an additional sample of size H − 1 is chosen

at random and the rank of yi among the H units is assessed by one or more rankers using some

inexpensive ranking method not requiring measurement of the H − 1 units. MacEachern et al.
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(2004), Stokes et al. (2007) and Wang et al. (2012) developed nonparametric mean estimators

that make use of imprecise ranking information from multiple rankers.

Suppose there are m rankers. For each measured unit i, the vector of ranks is denoted by

Ri = (Ri1, · · · , Rim), where Rij ∈ {1, . . . ,H} is the rank assigned to yi by Ranker j. There are

thus Hm post-strata jointly grouped by the ranks R = (Ri)
n
i=1, forming an m−way contingency

table. Let r = (r1, . . . , rm). Let PSr denote the post-stratum with Ri = r; that is, the rth cell in the

contingency table that contains measured units whose ranks are given by Ri1 = r1,..., Rim = rm.

Further, let πr, nr, and Ȳ[r] denote the probability, number and sample mean of observations falling

in PSr. Stokes et al. (2007) considered the stratified estimator of the mean µ, µ̂ =
∑

r π̂r(n)Ȳ[r],

where n is the random vector containing the counts of Y in the Hm post-strata, and π̂r(·) is the

estimate of the cell probability in PSr. Here, the summation is over all Hm realizations of the

rank vector. However, empty cells frequently arise in JP-S samples with multiple rankers, whose

sample means are not observable. For such cells, we proceed as if they do not exist. That is,

µ̂ =
∑
r/∈E

π̂r(n)Ȳ[r], (4.1)

where E denotes the set of empty cells. Even under this naive treatment, the efficiency of µ̂

can be much higher than the corresponding SRS mean estimator Ȳ (see Table 1), given the cell

probabilities are estimated appropriately.

In practice, as long as appropriate blinding is employed in the ranking process, it is guaranteed

that each of the H ranks is equally likely for each ranker. Thus, it is reasonable to assume that

for each ranker j and a randomly selected unit i, P (Rij = 1) = · · · = P (Rij = H) = 1/H. This

induces the constraints that all one-dimensional marginal probabilities are uniform on {1, . . . ,H}.

Stokes et al. (2007) used the raking method (Deming and Stephan 1940) to estimate πrs. Though

easy to implement, the estimates from raking do not necessarily converge to the true MLE when

empty cells exist, as mentioned in Section 2.
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4.2 Simulation

We conducted a simulation study, where we simulated JP-S samples and applied the GP method

to obtain π̂r in (4.1), to examine its performance in mean estimation.

We generated JP-S data with three rankers in the form of (Yi, Ri1, Ri2, Ri3)ni=1, where the

rankers can be either equally effective or not. Here, we assume that Ranker j, j = 1, 2, 3, be-

haves as if he assesses the rank of Yi by assigning it the true rank that some ranking variable

Xij has among its comparison group of size H. Further, we assume Xij = Yi + eij , where

Yi ∼ N(0, 1), eij ∼ N(0, σ2
j ) and eij is independent of Yi. If σ2

1 = σ2
2 = σ2

3, all three rankers are

equally effective. We set (σ2
1, σ

2
2, σ

2
3) to be (1/2, 1/2, 1/2) or (1/4, 1/2, 1/2), and (H,n) to (3,12),

(3,18), (5,20), and (5,30). Here, we chose σ2
j to be 1/2 or 1/4 so that each ranker has a rea-

sonable accuracy in assessing ranks. Note that the ranking quality can be measured by ρ, the

correlation between Xij and Yi. When σ2
j = 1/2 or 1/4, ρ ≈ 0.8 or 0.9 (approximately 64% or 81%

of the variability in Y can be explained by latent Xj). Also, the number of rank strata H needs

to be small in practical situations because ranking a larger number of units cheaply by judgment

with reasonable accuracy is difficult. That’s why we chose H = 3 or 5. In addition, the total

sample size n should not be large because JP-S is typically applied to achieve cost efficiency

when precisely measuring Y is expensive. We set n = n̄ × H so that for each rank stratum,

the average sample size n̄ is very small (4 or 6). For each parameter combination, we gener-

ated 1000 data sets and computed the mean estimator (4.1), using the cell probabilities estimated

from the raking and GP methods. When using the GP method, π̂stus in (4.1) are obtained by

maximizing the likelihood L ({πstu}) =
∏H
s=1

∏H
t=1

∏H
u=1 π

nstu
stu subject to the marginal constraints

π1++ = . . . = πH++ = π+1+ = . . . = π+H+ = π++1 = . . . = π++H = 1/H, where nstu is the cell

count in the post-stratum with R = (s, t, u).

Table 1 reports the approximate relative efficiency (RE) of the JP-S estimator µ̂ versus the SRS

mean estimator Ȳ , as well as two types of measure (U and L2) for assessing estimation errors of

cell probabilities. Here, RE is defined as the ratio of mean square errors (MSEs), namely

RE ≡
MSE

(
Ȳ
)

MSE (µ̂)
=

σ2
Y
n

E(µ̂− µ)2
,
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where E(µ̂ − µ)2 is approximated by the average of (µ̂ − µ)2 over the 1000 data sets. If RE > 1,

µ̂ is more efficient than Ȳ for estimating the population mean µ in terms of MSE. Also, the higher

the RE value is, the more gain in efficiency is achieved from using µ̂ over Ȳ . We further define

the uniform error U ≡ maxs,t,u
∣∣πstu − π̂stu∣∣ and the L2 error L2 ≡

∑
s,t,u(πstu − π̂stu)2, to assess

the performance in estimating cell probabilities. Table 1 shows that µ̂ based on GP provides much

better mean estimation than Ȳ in all cases we considered while raking does not. Also, it shows

that GP has consistently higher relative efficiency than raking. This is because GP provides much

better estimates of cell probabilities than raking, as shown by both U and L2 values in the table.

The improvement from using GP is substantial, especially when n/H is small.

Table 1: Simulated relative efficiencies of the JP-S estimator µ̂ versus the SRS mean estimator Ȳ ,
along with two types of estimation error U and L2 for estimating cell probabilities, are reported for
the raking and GP methods, respectively.

equally effective unequally effective
(H,n) raking GP raking GP
(3,12) RE 0.857 1.926 1.000 2.003

(U , L2) (0.256, 0.133) (0.121, 0.047) (0.258, 0.132) (0.118, 0.043)
(3,18) RE 1.02 4 1.736 1.110 1.913

(U , L2) (0.217, 0.097) (0.099, 0.034) (0.224, 0.100) (0.096, 0.032)
(5,20) RE 1.173 2.587 1.206 2.618

(U , L2) (0.159, 0.073) (0.092, 0.033) (0.162, 0.072) (0.092, 0.037)
(5,30) RE 1.246 2.363 1.147 2.246

(U , L2) (0.130,0.053) (0.076, 0.029) (0.164, 0.072) (0.091, 0.036)

4.3 An Empirical Study: Tree Height Data

We consider a data set containing heights of 399 conifer trees (in feet) given in Chen et al. (2006).

For illustrative purposes, we set our target parameter to be the mean height of the 399 trees. To

generate a JP-S sample (with replacement) of size n with H strata, we repeated the following

procedure n times: first, randomly select a group of H trees from the entire data set; Among the

H selected trees, ranking is done by three “perceived” rankers based on ranking variables X1, X2

and X3, and then one of the H trees is randomly selected to enter the JP-S sample. Again, for

j = 1, 2, 3, Xj = Y + εj , where Y is the tree height, εj
iid∼ N(0, σ2

j ), and Y and εj are independent.

Here, we set H = 5, n = 40, σ2
1 = σ2

2 = 52 and σ2
3 = 102 and generated 1000 JP-S samples.

16



Figure 4.1: Tree height data example: the left panel reports the computing time (in seconds) for
three methods, GP, raking and NR, using box plots based on 1000 JP-S samples; the right panel
provides an enlarged view for comparing GP and Raking easily. Here, NR is implemented by the
"quadprog" procedure in MATLAB.

The left panel of Figure 4.1 compares the computing time (in seconds) of three methods using

box plots based on the 1000 JP-S samples, namely GP, raking, and NR. Both GP and raking are

much faster than NR. Raking is actually slightly faster than GP on average; however, the small

difference shown by the enlarged view in the right panel of Figure 4.1 may not have much practical

impact, especially when compared with the huge difference from NR. The performance of raking

in estimation is worse than GP: 1.93 vs. 2.24 in terms of relative efficiency. NR is very slow due

to the extreme sparsity of the tables involved (i.e., lots of empty cells and small counts). For some

of the 1000 JP-S samples, it does not seem to converge even after reaching the maximum 1000

iterations. The RE of NR is very poor and much lower than one, indicating it is even much worse

than the SRS mean estimator Ȳ in estimating the population mean.
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5 Application to Income Data

In this section, we examine the existence of gender-based inequality in returns to education.

Schooling is conceived as a process by which people acquire credentials. Traditional theories

of stratification assume that education contributes to inequality by endowing people with different

amounts of credentials (Blau and Duncan 1967). Others maintain that education is instrumen-

tal in determining one’s life chances because it functions as a criterion which employers use to

screen job applicants (e.g., Arrow 1973). Against this backdrop, many scholars have argued that

returns for female education are low, because of lower earnings, lower labor force participation,

and shorter working hours of women, compared with men (e.g., Moreh 1971; Belman and Hey-

wood 1991; Orazem and Vodopivec 1995; Haider 2001). This suggests that education might not

be a vehicle for accomplishing economic equality between men and women.

Our data are from the 2004 American National Election Studies (ANES) Survey, publicly ac-

cessible at the ANES website (http://www.electionstudies.org/). The sample consists of a cross-

section of respondents that yielded 1,212 face-to-face interviews in the pre-election study prior to

the presidential election, conducted September 7 through November 1, 2004. We grouped income

data into 23 levels, and turned education into a dichotomous variable (i.e., 2 for "college gradu-

ates and above" and 1 for "others"). Three categorical variables, gender (X1), income (X2), and

education (X3), were used in our analysis, so the observed table is 2× 23× 2.

Given the total sample size n, the cell frequencies nijks are assumed to follow a multinomial

distribution with probabilities {pijk, i =′m′ for men and ′f′ for women, j = 1, . . . , 23, k = 1, 2}. Our

main purpose is to test that at each education level, as the income level increases, the proportion

of men increases so that the proportion of women decreases. More specifically, we test (i) H11, (ii)

H21, and (iii)H11∩H21, whereHk1 : pm|1k ≤ pm|2k ≤ · · · ≤ pm|23,k for k = 1, 2 and pi|jk = pijk/p+jk.

The null hypothesis H0 for all three cases is that the pm|jk’s are equal for all income levels.

Let L(p) =
∏
i=m,f

∏23
j=1

∏2
k=1 p

nijk

ijk . Under the order constraints above, the MLE of pijks is the

solution to
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Figure 5.1: Income data example: the estimated proportions of men for education level (A) not
college graduates (k = 1) and (B) college or higher (k = 2). The circle and the solid line represent
the unconstrained and constrained MLE, respectively.

minimize L(p) =

23∏
j=1

2∏
k=1

 ∏
i=m,f

p
−nijk

i|jk

 p
−n+jk

+jk


subject to pm|jk + pf |jk = 1 for all j, k;∑

jk

p+jk = 1;

under H11 : pm|11 ≤ pm|21 ≤ · · · ≤ pm|23,1;

under H21 : pm|12 ≤ pm|22 ≤ · · · ≤ pm|23,2;

under H11 ∩H21 : pm|1k ≤ pm|2k ≤ · · · ≤ pm|23,k, for k = 1, 2.

where n+jk = nmjk +nfjk. In Figure 5.1, we plot the constrained and unconstrained MLEs of pm|jk

for j = 1, . . . , 23 and k = 1, 2. The unconstrained MLE of pm|jk is simply nmjk/(nmjk + nfjk), the

corresponding sample proportion of men. The constrained MLE is obtained by our GP method

where all “=” constraints are changed to “≤” in the optimization problems above.

To test the hypotheses above, we consider a likelihood ratio test (LRT), T = maxp∈Ω0 L(p)/
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maxp∈Ω L(p), where Ω0 and Ω are the parameter space under the null hypotheses H0s and the

entire parameter space, respectively. Since the reference distribution of T in each test is un-

known, we computed the p-value using a permutation procedure where we permuted the lev-

els of incomes. Let π = (π(1), π(2), . . . , π(23)) be a permutation of {1, 2, . . . , 23}, and Π be the

set of all possible πs. Let T(π) be the LRT statistic using the permuted sample n(π), where

n(π) ≡
{
niπ(j)k, i = m, f, j = 1, 2, . . . , 23, k = 1, 2

}
. Then the p-value can be approximated by∑

π∈Π I (Tobs > T(π)) /|Π|, where |Π| is the total number of permutations and Tobs is the observed

test statistic. To avoid heavy computation, we computed the p-value using 1000 random permu-

tations, not based on the enumeration Π. Here, one important step is to find the MLEs of the cell

probabilities with/without the order constraints for each of the permutations, where the proposed

GP method is applied.

The test results are reported in Table 2. Among non-college graduates, the proportion of men

increases significantly as the income scale moves up. In contrast, this pattern was substantially

less pronounced among college graduates, suggesting a much weaker level of gender-based

income inequality. This suggests that education may help eliminate the income inequality between

men and women.

Finally, we compare the GP method with the NR method in this example, where the raking

method (i.e., the IPF algorithm) is not applicable. Both GP and NR gave essentially the same

estimates in each permutation, which led to the same testing results. In terms of speed, NR

was comparable or slightly faster than GP. This is perhaps due to the fact that the table does

not contain any empty cell so that NR converged quickly. The computing time needed for any

of the permutations is less than 0.2 second for either method, indicating no noticeable difference

between the two. Here, we prefer using GP, because it is simple to implement and does not require

us to provide (and test) starting points. Implementing the general-purpose NR method is not as

easy and requires great effort as well as a good understanding about how NR works.

Table 2: The LRT test results for the inequality in income between men and women.
Hypothesis not college graduates college and higher both

(H11) (H21) (H11 ∩H21)
p-value 0.0000 0.0816 0.0020
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6 General use of GP in contingency tables

Although we focus on the constraints discussed in Sections 2 and 3, we show that our approach

can be used to solve a wide variety of problems for contingency tables. To do so, we summarize

below all the problems of contingency tables that can be handled by GP, including the relevant

previous work.

P1 A discrete random variable Y follows Multinomial(n, p1, · · · pr), subject to constraints of the

form pi ≤ αijpj for i 6= j and constants αij > 0. This problem fits in constrained estimation

of one-way contingency tables. An important special case, pi+1 ≤ pi for i = 1, . . . , r− 1, had

been solved by Robertson et al. (1988) through an iterative method based upon Fenchel

duality. Bricker et al. (1997) considered the problem using a GP-based approach.

P2 Suppose X and Y index the rows and columns of a r × s contingency table. Let pij be the

probability that observations fall in the (i, j)th cell. To specify a positive (negative) association

between X and Y , the constraints in the local odds ratios θij are given by

θij =
pijpi+1,j+1

pi+1,jpi,j+1
≥ 1 (≤ 1)

for all i and j. To estimate cell probabilities given positive/negative association, Bricker et al.

(1997) reformulated the problem as a GP and then utilized GP software for the computation.

P3 Suppose that data are available on a discrete variable Y at r different values of a discrete

explanatory variable X. Let Ui = (Y |X = xi), 1 ≤ i ≤ r, each taking values in the same

set of outcomes o1, · · · , os and following Ui ∼ Multinomial(ni, p1|i, · · · , ps|i). For outcome j,

1 ≤ j ≤ s − 1, there exist order constraints pj|1 ≤ · · · ≤ pj|r. Jewell and Kalbfleisch (2004)

proposed a modified pooled-adjacent violator (m-PAV) algorithm to solve this problem. Lim

et al. (2009b) proposed a GP-based approach that is much faster than the m-PAV algorithm.

P4 In a multi-way contingency table, certain marginal probabilities are known. As discussed

before, such problems were largely solved by the popular raking method. We have proposed

a GP-based approach in Section 2. Though a recent application described in Section 4, i.e.,
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estimating the population mean from JPS samples with multiple rankers, we have shown the

superiority of the proposed method over the raking method.

P5 In a multi-way contingency table, marginal/conditional probabilities are ordered in accor-

dance with one (or one set) of the discrete random variables. Note that P1 and P3 are both

special cases of P5. We have discussed GP modeling for this type of problem in Section 3

and applied it to hypothesis testing using income data in Section 5.

Note that the earlier GP-based work (P1-P3) was restricted to low-dimension tables (m = 1 or 2)

and the problems were solved on a case-by-case basis. In P4-P5, by contrast, we mainly focus on

three-way tables, which are as common as two-way tables in applications. It is trivial to verify that

GP modeling in P4-P5 can be done in all two-way tables. Also, we provide sufficient conditions for

GP modeling for higher dimensional tables. Thus, by adding P4 and P5 into the pool, which are

more general and harder in nature, the scope of GP applications in contingency tables has been

greatly widened.

We note that a mixture of any two GP-feasible constraints is also GP feasible. Thus, the GP-

based approach has the potential to handle a large variety of constraints beyond the five cases;

for example, estimating cell probabilities in a three-way contingency table with ordered marginals

on X and positive association between Y and Z. Also, it is possible to combine the two types

of constraints discussed in Sections 2 and 3, and the resulting constrained optimization problem

can be still solved via GP. For example, as long as the set of cell probabilities that appear in the

known marginal constraints does not overlap with the set of cell probabilities that appear in the left

hand sides of “≤” constraints arising from order constraints, GP modeling can be done similarly. In

addition, it can deal with any objective function in the form of monomials, including the likelihood

function but not limited to it. For example, we could consider other types of estimators for P4-P5,

such as the one minimizing discrimination information (Kullback, 1959) given by
r∏
i=1

s∏
j=1

t∏
k=1

(
nijk
npijk

)nijk
n

,

or from quasi-Bayes estimation (Good, 1965, 1967; Bishop et al., 1975) by maximizing
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r∏
i=1

s∏
j=1

t∏
k=1

p
nijk+k

n+tk

ijk .

7 Discussion

We have proposed a GP-based approach to obtain the MLEs of cell probabilities under two im-

portant types of constraints on marginals/conditionals, as discussed in Sections 2 and 3. Below

we comment on how the GP method behaves under sparse contingency tables, which often pose

great difficulty for the existing methods. In fact, the optimization problems in this paper are convex

because the negative of the log likelihood functions are convex and the constraints involved are all

linear in the optimization variables. As a result, the MLEs exist unless the constraints are incon-

sistent (i.e., no feasible values of the optimization variables satisfy all the constraints). Recall that

the GP algorithm always finds the (true, globally) optimal solution for any feasible GP. Due to this

attractive feature, the sparsity of contingency tables is not a concern for the GP method as long as

the constraints are consistent. For example, our first application in Section 4 involves sparse con-

tingency tables when the sample size n is not large and/or the set size H is not small. Specifically,

in our first data example with n = 40, H = 5 and m = 3 (i.e., three rankers) in Section 4.3, the 40

observations in one JP-S sample fall into 53 = 125 cells, and so the involved contingency tables

are extremely sparse. The GP method worked well in this example while the other two methods,

raking and NR, did not.

Geometric programming is able to provide a unified approach for various types of constrained

estimation problems in contingency tables as summarized in Section 6. However, there are still

open cases, for which we cannot guarantee solutions provided by the GP-based approach. They

include three-way contingency tables with all three sets of two-dimensional marginals known, high-

dimensional tables with known marginals where the index sets generally overlap, and tables with

more than one set of r−dimensional marginal order constraints. For such cases, we could try to

extend raking, which can be difficult, especially when empty cells exist, requiring future research.

Or we could seek feasible algorithms on a per-table basis; for example, given an observed table,

we conduct the GP relaxation, solve the corresponding GP, and then examine whether it yields a

23



feasible solution before trying other numerical algorithms.

Although the main focus of this paper is on point estimation, we note that the covariance matrix

of the constrained MLE, say Var(p̂), can be generally obtained through bootstrapping, no matter

which type of constraints is involved. This entails (i) taking a sample of size q (q ≤ n) with replace-

ment from the ungrouped data where each individual observation is recorded as one data line;

(ii) calculating p̂ based on the generated sample using our proposed GP method; (iii) repeat the

above steps Q times. Then we calculate the sample covariance matrix based on p̂(1), · · · , p̂(Q),

which can be rescaled to approximate Var(p̂). To estimate the variance of the JP-S mean estima-

tor in Section 4, we further calculate µ̂(1), · · · µ̂(Q) using (4.1) based on the Q samples, and then

compute the sample variance to estimate Var(µ̂) in a similar manner. Also, we can construct con-

fidence intervals for each cell probability or µ̂ from the corresponding quantiles of the Q estimates.

There are some other methods for variance estimation include random grouping, jackknife, etc;

and we refer readers to Lohr (1999) for details.

Appendix A: Proof of Theorem 1

Theorem 1 deals with three situations in three-way contingency tables, as described in Section 2.1.

Proof for situation (i):

The relaxed problem is a GP because (i) the objective is a monomial function that is a special case

of posynomial functions; and (ii) all “≤” constraints are posynomial functions of pijks. Let {p̄ijk}

denote one optimal solution to the GP.

1. If {p̄ijk} satisfies all the equality constraints in (2.2) , then {p̄ijk} provides an optimal solution

to (2.2) , including both empty and nonempty cells. The proof is done in this case.

2. Suppose there exists at least one constraint with "<" held at {p̄ijk} so that {p̄ijk} cannot

provide a solution to the original optimization problem in (2.2). Without loss of generality,

assume
∑

j,k p̄i1jk < pi1++. Then
∑

i

∑
j,k p̄ijk <

∑
i pi++ = 1, which gives

∑
j

∑
i,k p̄ijk <∑

j p+j+ and
∑

k

∑
i,j p̄ijk <

∑
k p++k. So there exist j1 and k1 s.t.

∑
i,k p̄ij1k < p+j1+ and
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∑
i,j p̄ijk1 < p++k1 . Then the cell (i1, j1, k1) must be empty, i.e. ni1j1k1 = 0. Otherwise, we

can construct {p̃ijk} by increasing p̄i1j1k1 by a very small amount while keeping all the other

p̄ijks unchanged, so that the related three "≤" constraints still hold. Doing so would increase

the value of L if the cell (i1, j1, k1) is nonempty, which contradicts that {p̄ijk} is an optimal

solution to the GP.

3. Since the cell (i1, j1, k1) is empty, we can increase p̄i1j1k1 , while keeping the probabilities of

all the other cells unchanged (without increasing the value of L), until at least one of the three

equality constraints
∑

j,k pi1jk = pi1++,
∑

i,k pij1k = p+j1+ and
∑

i,j pijk1 = p++k1 holds (i.e.,

the one with the least slack). Denote the increased value by p̄∗i1j1k1 . Now update {p̄ijk} by

letting p̄i1j1k1 = p̄∗i1j1k1 . Note that the updated {p̄ijk} not only provides an alternative optimal

solution to the GP, but also changes at least one inequality constraint from the strict “<” sign

to the “=” sign.

4. Repeat steps 1 through 3 until all the “<” constraints are changed to the corresponding “=”

constraints.

After the above steps, the adjusted {p̄ijk} provides an optimal solution to both the GP and the

original optimization problem in (2.2). Note that all the adjustments are done to empty cells. Thus,

the GP provides an optimal solution to all non-empty cells in (2.2).

Proof for situation (ii):

This proof is omitted for brevity because it is similar to the proof in situation (i) with very slight

modifications.

Proof for situation (iii):

Let {p̄ijk} denote one optimal solution to the GP.

1. If {p̄ijk} satisfies all the equality constraints in (2.4) , then {p̄ijk} provides an optimal solution

to (2.4), including both empty and nonempty cells. This concludes the proof in this case.
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2. Suppose there exists at least one constraint in which "<" holds at {p̄ijk} so that {p̄ijk} can-

not provide a solution to the original optimization problem in (2.4). Without loss of gener-

ality, assume
∑

k p̄i∗j∗k < pi∗j∗+. Then
∑

j

∑
k p̄i∗jk <

∑
j pi∗j+ =

∑
k pi∗+k, which gives∑

k

∑
j p̄i∗jk<

∑
k pi∗+k. So there exists k∗ s.t.

∑
j p̄i∗jk∗ < pi∗+k∗ . Then the cell (i∗, j∗, k∗)

must be empty, i.e. ni∗j∗k∗ = 0. Otherwise, we can construct {p̃ijk} by increasing p̄i∗j∗k∗ by

a very small amount while keeping all the other p̄ijks unchanged, so that the related three

"≤" constraints still hold. Doing so would increase the value of L if the cell (i∗, j∗, k∗) is

nonempty, which contradicts that {p̄ijk} is an optimal solution to the GP.

3. Since the cell (i∗, j∗, k∗) is empty, we can increase p̄i∗j∗k∗ , while keeping the probabilities of

all the other cells unchanged (without increasing the value of L), until at least one of the three

equality constraints
∑

j,k pi∗jk = pi∗++,
∑

i,k pij∗k = p+j∗+ and
∑

i,j pijk∗ = p++k∗ holds (i.e.,

the one with the least slack). Denote the increased value as p̄∗i∗j∗k∗ . Now update {p̄ijk} by

letting p̄i∗j∗k∗ = p̄∗i∗j∗k∗ . Note that the updated {p̄ijk} not only provides an alternative optimal

solution to the GP, but also changes at least one inequality constraint from the strict “<” sign

to the “=” sign.

4. Repeat steps 1 through 3 until all the “<” constraints are changed to the corresponding “=”

constraints.

After the above steps, the adjusted {p̄ijk} provides an optimal solution to both the GP and the

original optimization problem in (2.4). Note that all the adjustments are done to empty cells. Thus,

the GP provides an optimal solution to all non-empty cells in (2.4).

Appendix B: Proof of Theorem 4

We need to show that the GP (3.5) achieves the optimal value only when (3.4) is satisfied. Let

{p̄jk|i, p̄i++} denote the optimal solution to the GP. Suppose there exists at least one of the terms

among
∑

jk pjk|i and
∑

i pi++ with "<1" held at {p̄jk|i, p̄i++} .

If for some i, say i∗,
∑

jk p̄jk|i∗ < 1, then we can obtain {p̃jk|i, p̃i++} by setting p̃j∗k∗|i∗ =

p̄j∗k∗|i∗ + 1 −
∑

jk p̄jk|i∗ , p̃jk|i = p̄jk|i for i 6= i∗ or j 6= j∗ or k 6= k∗, and p̃i++ = p̄i++ for all i,
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where (j∗, k∗) satisfies ni∗j∗k∗ > 0. Note that {p̃jk|i, p̃i++} satisfies all the inequality constraints in

(3.5) with
∑

jk p̃jk|i∗ = 1. Since p̃j∗k∗|i∗ > p̄j∗k∗|i∗ , the objective function is smaller at {p̃jk|i, p̃i++},

indicating {p̄jk|i, p̄i++} is not optimal. Hence,
∑

jk p̄jk|i = 1 must hold for all i.

If
∑

i p̄i++ < 1, then we can obtain {p̃jk|i, p̃i++} by setting p̃r++ = p̄r++ + 1−
∑

i p̄i++, p̃i++ =

p̄i++ for i 6= r, and p̃jk|i = p̄jk|i for all i, j, k. Note that

p̄1++ = p̃1++ ≤ p̄2++ = p̃2++ ≤ · · · ≤ p̄r++ < p̃r++

and
∑

i p̃i++ = 1 so that {p̃jk|i, p̃i++} satisfies all the inequality constraints in (3.6). Since p̃r++ >

p̄r++, the objective function is smaller at {p̃jk|i, p̃i++}, indicating {p̄jk|i, p̄i++} is not optimal. Hence,∑
i p̄i++ = 1 must hold.

Appendix C: Proof of Theorem 5

Again, we need to show that the GP (3.6) achieves the optimal value only when (3.4) is satisfied.

Since C ⊂ J × K, the complement C̄ is nonempty. Let {p̄jk|i, p̄i++} denote the optimal solution

to the GP. Suppose there exists at least one of the terms among
∑

jk pjk|i and
∑

i pi++ with "<1"

held at {p̄jk|i, p̄i++} .

If for some i, say i∗,
∑

jk p̄jk|i∗ < 1, then we can obtain {p̃jk|i, p̃i++} by setting p̃j∗k∗|i∗ =

p̄j∗k∗|i∗+1−
∑

jk p̄jk|i∗ , p̃jk|i = p̄jk|i for i 6= i∗ or j 6= j∗ or k 6= k∗, where (j∗, k∗) ∈ C̄ and ni∗j∗k∗ > 0,

and p̃i++ = p̄i++ for all i. Note that {p̃jk|i, p̃i++} satisfies all the inequality constraints in (3.6) with∑
jk p̃jk|i∗ = 1. Since p̃j∗k∗|i∗ > p̄j∗k∗|i∗ , the objective function is smaller at {p̃jk|i, p̃i++}, indicating

{p̄jk|i, p̄i++} is not optimal. Hence,
∑

jk p̄jk|i = 1 must hold for all i.

If
∑

i p̄i++ < 1, then a similar argument can be made as in the proof of Theorem 4 to show that∑
i p̄i++ = 1 must hold; that is, we can obtain {p̃jk|i, p̃i++} by setting p̃1++ = p̄1++ + 1−

∑
i p̄i++,

p̃i++ = p̄i++ for i 6= 1, and p̃jk|i = p̄jk|i for all i, j, k, which gives a smaller value of the objective

function than {p̄jk|i, p̄i++}.
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