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Abstract
Clinical researchers often analyze survival data as binary outcomes using the logistic regression method.

This paper examines the information loss resulting from analyzing survival time as binary outcomes. We first
demonstrate that, under the proportional hazard assumption, this binary discretization does result in a significant
information loss. Second, when fitting a logistic model to survival time data, researchers inadvertently use the
maximal statistic. We implement a numerical study to examine the properties of the reference distribution for
this statistic. Finally, we show that the logistic regression method can still be a useful tool for analyzing survival
data in particular when the proportional hazard assumption is questionable.
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1. Introduction

This study examines the efficiency of the logistic regression model when used as an alternative to the
statistical methods specifically designed for analyzing time-to-event data. In biomedical studies, in
assessing the effects of experimental treatment in survival outcome, many clinical researchers rely on
a logistic regression model after discretizing continuous observations (Annesi et al., 1989; Cain et al.,
1994; Moriguchi et al., 2006). For example, when assessing the effectiveness of a newly developed
drug for treating myocardial infection, one may show that 65% of the participants in the treatment
group had survived over 5 years, whereas only 27% in the control group did so.

In discretizing continuous or ordinal data into binary counts, the foremost important concern arises
from the subjective nature of the choice concerning the cutoff point for aggregation. Sometimes
the researcher chooses this cutoff point because of its substantive meaning. For example, cancer
researchers may choose the five-year post surgery period as the cutoff point because experience shows
that the likelihood of recurrence declines drastically thereafter. However, many researchers arbitrarily
choose this cutoff point; or, even worse, researchers often choose the time point at which the resulting
binary outcomes maximally differentiate the treatment and the control groups.

When subjectively choosing the cutoff point that maximally separates the survival times of the
treatment and the control groups, we argue that the standard normal distribution should no longer be
the reference distribution. Instead, one ought to consider the distribution of the maxima of dependent
multivariate normal distributions as the reference distribution. Naturally, this reference distribution
has heavier tails than the standard normal distribution.
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When discretizing continuous observations, another natural concern is the potential loss of infor-
mation. As Abbott (1985) argued, conceptually it is evident that the inference based on the propor-
tional hazard model is considerably more informative than that based on an analysis of the survival
outcome at a fixed time point. However, for practical data analysis, if the statistical method designed
for binary data (e.g. logistic regression or the methods for analyzing a 2 × 2 table) attains a high
level of discriminant or predictive power, information loss can be mitigated. Further a set of logistic
regressions could provide provide better understanding on the treatment effect than the proportional
hazards model when it varies over time. Thus, it is important to keep track of the gain or the loss
incurred by discretization.

The paper is organized as follows. In Section 2, we launch an in-depth analysis of the gain and
loss incurred by discretization. We first study the danger from a subjectively chosen cut-off point for
the discretization. Secondly, we discuss the information loss resulting from discretization when the
true underlying model is the proportional hazards model. Finally, we discuss potential benefit of using
a set of logistic regressions. In Section 3, we illustrate our arguments by analyzing the Veteran’s lung
cancer data reported in Kalbfleisch and Prentice (1980). Section 4 concludes our discussion.

2. Gain and loss by discretization

2.1. Choosing a cutoff point for discretization

We first assess the danger associated with arbitrarily choosing the cutoff point when discretizing data
before fitting a logistic regression model to survival time data. Researchers often choose the cutoff
point c to maximize the treatment effects. In other words, they choose the point where the survival
probabilities between the control and the treatment group are most discrepant. Under this setting the
testing statistic to be used is

Tmax = max
c

p̂1(c) − p̂2(c)√
p̂1(c)

(
1 − p̂1(c)

)/
n + p̂2(c)

(
1 − p̂2(c)

)/
m
,

where n and m are the number of subjects from the control and the treatment group, and p1(c) and
p2(c) are the probabilities that a subject from the control and the treatment group survives more than
c.

It is clear that the asymptotic reference distribution of Tmax is no longer the standard normal
distribution. To learn more about the reference distribution of the test statistic T, we implement a
numerical study. In doing so, we generate 100 random samples for the treatment and the control
groups, where each random sample is generated from the exponential distribution with mean 100.
Thus, the total sample size is 200. We generate 1000 such data sets and conduct a permutation test.
Here, we set c = 50, 100, 150, and 200 and obtain the test statistic while recording the maximum
value from each sample. Figure 1 summarizes our results by comparing the cumulative distribution
function of the test statistic with that under the standard normal distribution.

As shown in Figure 1, our results clearly show that the cumulative distribution of the test statistic T
has much heavier tails than the standard normal distribution. Accordingly, using the standard normal
distribution as the theoretical reference distribution will increase the likelihood of committing Type I
error.

2.2. Information loss from discretization

Several studies have examined the information loss resulting from fitting a logistic regression model
to survival data in various settings. Comparing the parameter estimates from the proportional hazard
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Figure 1: The cumulative distribution functions of Tmax and the standard normal distribution

model (PHM) and a modified logistic regression model, Ingram and Kleinman (1989) showed that the
two models yielded nearly identical results. Annesi et al.(1989) compared the asymptotic relative effi-
ciency of the logistic regression approach and the proportional hazard model. The authors concluded
that the latter is superior to the former when analyzing longitudinal data. Moriguchi et al. (2006)
compared the PHM and the logistic regression models in a retrospective study concerning the prog-
nosis of gastric cancer patients. Their results showed that both models identified the same set of risk
factors, although the magnitudes of regression coefficients in the two sets of models were somewhat
discrepant.

As in previous studies, we study the issue of information loss in a specific model setting that is very
common in clinical studies. More specifically, we compare the efficiency of the logistic regression
model with that of the survival regression model based on the partial likelihood in terms of their Fisher
information (see Moriguchi et al. 2006). In order to do so, we assume the data are generated from two
samples with differential hazards; a similar assumption is made in Efron (1977)’s study measuring the
information loss resulting from using the partial likelihood. The author compared the partial and the
logistic likelihoods in terms of the information on the parameters of the assumed survival model.

2.3. Information

Suppose that a clinical study is conducted to investigate a treatment of interest in a randomized design.
n and m subjects are randomly assigned to control and treatment groups respectively. Without loss of
generality, we assume that the true hazard rate of the underlying survival time in the placebo group
is λ(t) = 1, whereas that for the treatment group is λ(t) = λ. Let (U11, . . . ,U1n) and (U21, . . . ,U2m)
denote the survival times in the control and treatment groups respectively. Ui js follow the exponential
distribution with rate λi and independently and identically distributed for i = 1, 2 and j = 1, 2, . . . , ni.
For simplicity, we let λ1 = 1, λ2 = λ, n1 = n, and n2 = m.
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A simple approach to analyzing these data (without considering the censoring in survival time) is
to define a binary outcome Wi = I(U1i < c) and V j = I(U2 j < c) for i = 1, . . . , n and j = 1, . . . ,m,
where c is the cutoff point for discretization. If one fits a logistic regression model to these transformed
data, the treatment and the response variables can be written as

(x, y) =
(

0 . . . 0 1 . . . 1
w1 . . . wn v1 . . . vm

)T

where x is the indicator variable capturing the group membership of each patient (0 for the control
group, 1 for the treatment group) and y is the binary survival outcome.

Alternatively, one can resort to the proportional hazard model. The most commonly assumed
probability model is in the partial likelihood form, and it is constructed by comparing the risk of the
failed subject to that of all the other subjects at each time point.

In this section, our interest is to compare the efficiency of the two methods in estimating treatment
effects when the data is from a proportional hazards model. We compute the Fisher information of the
parameter in the proportional hazard model in applying the logistic regression model and the partial
likelihood for the proportional hazards model.

As a preliminary work, we derive the Fisher information on λ for the two methods. It would have
been ideal if the two quantities have simple expressions with respect to the true λ; unfortunately, this
is not the case with the partial likelihood approach.

2.3.1. Logistic regression

If one chooses to work with the binary survival outcome with the cutoff point c, the transformed
variables {Wi, i = 1, 2, . . . , n} and {V j, j = 1, 2, . . . ,m} have the independent Bernoulli distribution

Wi ∼ Bernoulli(p(0|c)), V j ∼ Bernoulli(p(1|c)),

with corresponding success probabilities p(0|c) = P(U1i < c) = 1 − exp(−c) and p(1|c) = P(U2 j <
c) = 1 − exp(−λc). For notational simplicity, we let p0 = p(0|c) and p1 = p(1|c) below. The logistic
model is

log
(

p(x|c)
1 − p(x|c)

)
= µ + αx (2.1)

for x = 0, 1, where

µ = log
(

p0

1 − p0

)
, and α = log

(
p1

1 − p1

)
− log

(
p0

1 − p0

)
.

The log-likelihood function for (2.1) (Jung, 2009) is

n∑
i=1

wiµ − n log
(
1 + exp(µ)

)
+

m∑
j=1

v j
(
µ + α

) − m log
(
1 + exp(µ + α)

)
.

and the Fisher information matrix of α and µ is

FI
(
α, µ

)
= m

exp(µ + α)(
1 + exp(µ + α)

)2

(
1 1
1 1

)
+ n

exp(µ)(
1 + exp(µ + α)

)2

(
0 0
0 1

)
.
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Finally, the information on λ is

FIlogit(λ) =

{(
∂α

/
∂λ, ∂µ

/
∂λ

)
FI

(
α, µ

)−1
(
∂α

/
∂λ, ∂µ

/
∂λ

)T}−1

=

(
eλc − 1

ceλc

)2  e2λc

m
(
eλc − 1

)2 +
e2c

n (ec − 1)2

−1

(2.2)

by noting p0 = 1 − e−c and p1 = 1 − e−λc, and

α = log
(
p1

/
(1 − p1)

) − log
(
p0

/
(1 − p0)

)
= log

(eλc − 1
ec − 1

)
µ = log

( p0

1 − p0

)
= log

(
ec − 1

)
.

2.3.2. Proportional hazard model with partial Likelihood

If survival times is modeled via the partial likelihood without discretization, the baseline hazard func-
tion for the control and the treatment groups can be written as

λ0(x) = exp
(
log(λ)x

)
=

1 if x = 0
λ if x = 1,

where 0 and 1 indicates the control and the treatment group, respectively. Note that β = log λ in a
survival regression form.

The log partial likelihood(PL) with respect to β is defined as

log PL(β) =
n+m∑
i=1

βxi − log
(∑

j∈Ri

exp(βx j)
)
,

where Ri is the risk set at the i-th observed survival time or the set of subjects’ indices who survive
beyond xi. The the information on β can be calculated by attaining the expectation of the negative
second derivative

FI(β) = −E
(
∂2 log PL(β)
∂β2

)
=

n+m∑
i=1

{∑
j∈Ri

x2
j exp(βx j)∑

j∈Ri
exp(βx j)

−
(∑ j∈Ri

x j exp(βx j)∑
j∈Ri

exp(βx j)

)2}
.

As earlier, our objective is to compute the Fisher information on λ, not β, and we denote it FI
(
λ
)PL.

Since, β = log λ,
FIPL(λ) = λ2FI

(
log λ

)
.

Note that it is not amenable to derive a short-hand expression for I(λ) with respect to λ. For
comparison, we apply a simple Monte Carlo approximation technique to obtain the value based on
100 data sets generated from a fixed λ in the ensuing section.
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2.3.3. Comparison

Given the Fisher information of the two estimation methods, the asymptotic relative efficiency (ARE)

RE
(
λ
)
=

FIPL(λ)
FIlogit(λ)

will be computed for various choices of λ and c. The degree to which the choice of c is inappropriate,
or the severity of information loss, is closely related to the proximity of c to the mean survival time
1/λ as well as the difference in the mean survival time between the control and the treatment groups.

For the two sample models discussed in Section 1, we first calculate and graphically profile the
ARE when λ = 1, 2, 3, 5 and c ∈ [0, 10]. As indicated earlier, for each λ, we generate 100 simulated
data sets to calculate the approximate Fisher information for the partial likelihood approach. At this
stage, for simplification, two additional assumptions are made. First, we assume the sample sizes in
the control and the treatment groups are identical (i.e., n = m). Also, we do not simulate censoring,
which it may cause additional complications for the comparison of the information contents.
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Figure 2: The RE between the partial likelihood approach and the logistic regression for different choices of λ
and c.

Figure 2 plots the RE profiles with c’s on the interval [0, 10] for four choices of λ. Most notably,
our results show that, for each λ, the optimal efficiency of logistic regression is achieved when the
cutoff point c is approximately identical to the mean survival time 1/λ.

It should also be noted that that the ARE increases as 1/λ increases, widening the gap in the mean
survival times between the two groups. In other words, the amount of information loss incurred by
using the logistic regression method decreases as the two groups’ survival time become increasingly
separable.
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2.4. A set of logistic regressions

The previous section shows that the discretization of the data results in a severe information loss when
the data is from the proportional hazard model. However, the underlying distribution is unknown, the
dicretization and fitting a set of logistic regressions could provide a simple way to understand the
treatment effect. In this section, we numerically illustrate how a set of logistic regressions can be used
to understand the underlying model, particularly the non-proportional hazard model.

We consider the comparison of two survival curves, S 1 and S 2. The hazard rate of S 1 is

λ1(t) =
{

1/100, 0 ≤ t < 50
1/10, 50 ≤ t < ∞

and that of S 2 is
λ2(t) = 1/50, 0 ≤ t < ∞.

Figure 3 plots the survival curves S 1 and S 2.
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Figure 3: True survival functions of two populations

We generate 200 data sets with a size of n = 30, 50, 100 samples from each population. For each
data set, we discretize the data using a given level c and fit the logistic regression to estimate the
population effect. To be specific, for each ti, the survival time of the i−th subject, we let

Yi =

{
0, if ti ≤ c,
1, otherwise,
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and let

Xi =

{
0, if the i−th subject is from Population 1
1, if the i−th subject is from Population 2.

We then fit the logistic regression between Yi and Xi:

log
Pc

(
Yi = 1

∣∣∣Xi
)

1 − Pc
(
Yi = 1

∣∣∣Xi
) = β0c + β1cXi.

We choose c = 30, 40, 50, 60, 70, 80, 90, and 100. We estimate β1c from the model and record their
p-values. The 200 estimates and their p-values from 200 data sets are plotted in Figure 4.

The p-values and the t-values in Figure 4 show that S 1(t) is larger than S 2(t) when t ≤ 50, whereas
when it is smaller when t ≥ 70. There is no difference between two functions around t = 60, the
time point when S 1(t) and S 2(t) meet to each other. In summary, a series of regression analysis
provides a good understanding of the underlying survival functions even when the hazards rates of
two populations are not proportional to each other.

3. Example

In this section, we analyze the widely used Veteran’s Administration lung cancer data (see Kalbfleisch
and Prentice 1980). In the data sets analyzed in this section, males with inoperable lung cancer were
randomly assigned to either the standard or the treatment chemotherapy conditions, and the end point
for therapy was time to death. The data set also included the information concerning various covariates
capturing the heterogeneity among patients such as disease extent and pathology, previous treatment
of the disease, demographic background, and initial health conditions. Our analysis accounts for all
the covariates included in the data set.

In our analysis, we discretize the survival time and fit a logistic regression model. In doing so,
we choose the cutoff point c to be 20, 40, 60, 80, or 100 (measured in weeks). Table 1 summarizes
our results. To better understand the nature of treatment effect, we compare the marginal survival
functions at each time point c for the patients in two experimental conditions.

factor c=20 c=40 c=60 c=80 c=100 PHM

Intercept 0.2931 0.3096 0.4736 0.7949 0.8274
Treatment 0.9685 0.3002 0.0928 0.0415 0.0071 0.085
Cell type 0.4773 0.0842 0.0077 0.0024 < 0.0001 0.0008

Squamous 0.6171 0.5273 0.1402 0.0590 0.0013 0.0003
Small 0.5073 0.1887 0.7623 0.6066 0.5521 0.29

Adeno 3 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Karno 0.3110 0.2437 0.4663 0.5497 0.3524 0.65

DD 0.0137 0.0934 0.2348 0.6094 0.3665 0.12
Pr. The. 0.0160 0.3996 0.4009 0.8502 0.2251 0.45

Table 1: The outputs of a set of chosen logistic regressions for the Veteran’s Administration lung cancer data.
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Our results show that, when fitting a logistic regression model, the statistical significance of treat-
ment effects becomes inflated as c increases. When fitting the PHM, the p-value for the coefficient
estimate concerning treatment effects was only .085. Against this baseline, for example, when c = 80
and 100, the p-values concerning treatment effects were .0415 and .0071 respectively. Thus, if we had
discretized the data using c = 80 or 100, the logistic model would have seriously inflated the statisti-
cal significance of treatment effects. However, the results from a series of logistic regression analysis
shows that the treatment effects become increasingly clear as c increases. This implies that, given all
other covariates, the survival function of the treatment group is larger than that of the non-treatment
group when t is large. In the current example, the proportional hazard assumption does not seem to be
completely met. Under this circumstance, when used with caution, the logistic regression approach
can provide a useful alternative to the proportional hazard model for analyzing survival time data.

4. Conclusion

In this article, we studied the information loss resulting from fitting a logistic regression model to
survival time data after discretizing them into binary outcomes. Fitting the logistic model after dis-
cretizatizing the survival data results in a significant amount of information loss when compared with
the correctly specified survival model. However, a careful use of a series of logistic regression analy-
sis provides a good understanding of the underlying survival model. In particular, as shown in Section
3, it helps understand a non-proportional hazard model. We illustrate the gain and the loss resulting
from discretization by analyzing the Veteran’s Administration lung cancer data.
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(b) t-values for n = 30.
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(c) p-values for n = 50.
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(d) t-values for n = 50.
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(e) p-values for n = 100.
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Figure 4: p-values and t-values for testing β1 in the logistic regressions.


