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Abstract

We study a permutation procedure to test the equality of mean vectors, homogeneity

of covariance matrices, or simultaneous equality of both mean vectors and covariance

matrices in multivariate paired data. We propose to use two test statistics for the

equality of mean vectors and the homogeneity of covariance matrices, respectively, and

combine them to test the simultaneous equality of both mean vectors and covariance

matrices. Since the combined test has composite null hypothesis, we control its type I

error probability and theoretically prove the asymptotic unbiasedness and consistency

of the combined test. The new procedure requires no structural assumption on the

covariances. No distributional assumption is imposed on the data, except that the

permutation test for mean vector equality assumes symmetric joint distribution of

the paired data. We illustrate the good performance of the proposed approach with

comparison to competing methods via simulations. We apply the proposed method

to testing the symmetry of tooth size in a dental study and to finding differentially

expressed gene sets with dependent structures in a microarray study of prostate cancer.
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1 Introduction

Multivariate paired data (paired multivariate observations from the same group of exper-

imental units) are common in many studies, and it is often of interest to test qualitative

properties of population (or treatment) mean vectors and/or covariance matrices. Obviously,

multivariate responses within each specific experimental unit are likely to be dependent. The

two samples are correlated due to the fact of having paired observations. Moreover, in some

cases, data may demonstrate distributions other than multivariate normal. The main con-

tribution of the presented paper is the development of distribution-free tests that do not

require stringent assumptions, their supporting theory, and a permutation procedure for im-

plementation that take these considerations into account when testing the equality of mean

vectors, equality of covariance matrices, and simultaneous equality of both mean vectors and

covariance matrices between multivariate paired samples.

This work is motivated by two studies. One is a study on human tooth size. The data

set contains 179 male adults who had natural normal occlusion with age range of 17–24

through a community dental health survey between 1999 and 2002 in Seoul, Korea, and is

part of a standard occlusion study that has been undergoing since 1997 (Kim et al., 2005;

Lee et al., 2007). A human adult normally has 14 permanent teeth in either maxilla (upper

jaw) or mandible (lower jaw) with 7 teeth (central incisor to second molar) on either left

or right side. The tooth sizes in terms of mesiodistal diameter of teeth of the patients were

measured using digital Vernier calipers with sharpened points. Investigating whether tooth

size profile is the same for the left and right sides around central incisors in terms of both

mean values and variation would be helpful to understand the developmental biology of teeth

and gain important insight into normative data of human tooth size, diagnostic criteria for

malocclusion, and dental treatment planning (Garn et al., 2002; Uysal et al., 2005). Notice

that the tooth sizes on the left and right sides from the same patient are naturally paired.

In statistical aspects, however, previous analysis mainly focused on the asymmetry in mean
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vectors between left and right sides, while little has been done to justify the asymmetry be-

tween the covariance parameters, letting alone the possible difference between the underlying

distributions. Among the subjects in the data set, we found several teeth exhibited exces-

sive sample skewness and/or kurtosis, implying some violations of the usual multivariate

normality assumption. We thus study a test procedure to address all these issues.

Another example is to test the asymmetry in either mean vectors or covariance matrices in

multivariate paired observations in a microarray study. In cancer microarray experiments,

it is a common practice to collect the tumor tissue from the same individual from whom

the normal tissue is taken. Such experiments produce multivariate paired observations.

The microarray data analysis focuses on finding differentially expressed genes between the

control and the treatment groups. In recent years, much efforts have been given to identifying

sets of genes that are significantly differentially expressed (e.g., Efron and Tibshirani, 2007;

Newton et al., 2007), in which differentially expressed genes are identified by testing the

asymmetry (or equivalently, inequality) between the means of normal and tumor tissues.

On the other hand, in gene tests, the non-zero entries of the concentration matrix (i.e., the

inverse covariance matrix) imply conditional dependence between corresponding genes given

the rest of genes (Lauritzen, 2004). Testing the symmetry or equality of the covariance

matrices or the concentration matrices can elucidate the changes in the dependent structure

(or the regulatory network) among genes due to a treatment.

We consider three notions of asymmetry for multivariate paired data: mean vectors,

covariance matrices, and both. To be specific, suppose XXX i = (Xi1, . . . , Xip)
T and YYY i =

(Yi1, . . . , Yip)
T are p-variate vectors of observations of variables XXX and YYY , respectively, from

the ith subject, i = 1, . . . , n. XXX i and YYY i are paired as they come from the same subject. It

is commonly assumed that subjects are independent. Let the mean vector and covariance
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matrix of the vector ZZZ i = (XXXT
i ,YYY

T
i )

T be denoted by

µ =

 µX

µY

 , Ω =

 ΩX , ΩXY

ΩY X , ΩY

 ,

respectively. Then,

(i) the equality hypothesis of the mean vectors means H0 : µX = µY ,

(ii) the hypothesis of homogeneity in the covariance matrices implies H0 : ΩX = ΩY , and

(iii) the hypothesis of equality in both is equivalent to H0 : µX = µY and ΩX = ΩY .

Notice that no particular distributional assumption is imposed on XXX or YYY . The test of (iii)

is the main theme of this paper since it is the most challenging, although all three notions

of asymmetry are of interest and addressed.

The test (i) of mean inequality has been well studied in the literature (Anderson, 2003,

Chapter 8). Under the usual multivariate normality assumption, the problem is equivalent to

testing the linear hypothesis µX−µY = 0 and the likelihood ratio test (LRT) has been widely

used. Moreover, group invariant tests, particularly a permutation invariant test — Hotelling’s

T 2 statistic (Hotelling, 1931), have received much attention. Other test procedures are also

available for the case XXX and YYY are independent to each other, that is the case ΩXY =

ΩY X = 0; for examples, Aslan and Zech, 2005 and de Leon, 2007. Pesarin (2001) provides

a detailed exposition of permutation tests and discusses permutation tests of treatment

effects for multivariate paired observations irrespective of the underlying dependence and

unknown distributions. Under the assumption that XXX and YYY are independent, the test (ii)

of covariance matrix equality has been extensively studied (Szatrowski, 1979; Perlman, 1980;

Conover, Johnson and Johnson, 1981; Anderson, 2003, Chapter 10). Under certain structural

assumptions, Han (1968), Choi and Wette (1972), and Harris (1985), among others, studied

the testing problem (ii). Lim et al. (2010) studied the LRTs for correlated multivariate

samples under the multivariate normality assumption and characterized the finite-sample
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distribution of the LRT statistic for the hypothesis (ii) to be a function of Wishart random

variables which depends on the unknown true overall covariance matrix Ω, of which for

implementation they employed a parametric bootstrap procedure. However, LRTs can be

sensitive to non-normality in data (e.g., Olson, 1974). Assuming normality for paired data,

Bradley and Blackwood (1989) considered an F-test for the hypothesis (iii) for univariate

case based on a regression context between the differences and sums of paired data.

In this paper, we propose a procedure for the three tests that allows the paired samples to

be correlated without any structural assumption. The proposed procedure also requires no

distributional assumption, except the symmetric paired data joint distribution assumption

for the permutation test for hypothesis (i) of mean equality. In particular, we utilize the

well-known Hotelling’s T 2 statistic, denoted by T1, for testing the mean vector equality

and another statistic, denoted by T2 and described in the next Section, for testing the

covariance matrix equality. We show that the null distributions of T1 and T2 are invariant

to the permutation betweenXXX i and YYY i and the permutation betweenXXX i−µX and YYY i−µY ,

respectively, which is independently done for every subject i. A major challenge rests in

combining T1 and T2 to test the simultaneous equality of both mean vectors and covariance

matrices, in other words, to obtain the rejection region of the form {T1 > c1 or T2 > c2}.

To resolve the difficulty, we restrict our class of rejection regions to sets with two “tuning”

parameters chosen by the investigator and approximate the probability of type I error of the

combined test using a permutation procedure. We demonstrate in theory that the combined

test is asymptotically unbiased and consistent.

The proposed method, the theoretical results, and the permutation procedure for imple-

mentation are described in Section 2. We report empirical size and power of the proposed

method and compare them to those of the competing methods via simulations in Section 3.

The application of the methods to the aforementioned data examples are provided in Sec-

tion 4. Section 5 concludes the paper.
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2 Proposed Method

Our goal is to develop a procedure to test the three notions of asymmetry, particularly the

asymmetry of both mean vectors and covariance matrices. We consider two test statistics

for mean vector equality and for covariance matrix equality, and then combine them to test

the equality of both.

2.1 Test Statistics

Based on the same notations as in Section 1, the random sample XXX1, . . . ,XXXn comes from

a p-variate distribution with mean vector µX and covariance matrix ΩX , and the random

sample YYY 1, . . . ,YYY n follows another p-variate distribution with mean vector µY and covariance

matrixΩY . The paired sampleZZZ i = (XXXT
i ,YYY

T
i )

T , i = 1, . . . , n, is a random sample assumed to

be independent and identically distributed with mean vector µ = (µT
X ,µ

T
Y )

T and covariance

matrix Ω whose p× p diagonal matrices are ΩX and ΩY . The paired samples are dependent

in the sense that Ω has upper p× p off-diagonal matrix ΩXY and lower off-diagonal matrix

ΩY X . Alternatively, XXX i and YYY i can be viewed as following general models with additive

errors, i.e., XXX i = µX + eeeXi and YYY i = µY + eeeY i, respectively, where µX and µY are mean

vectors or profiles of XXX and YYY , eeeXi and eeeY i are mean zero error terms with var(eeeXi) = ΩX ,

var(eeeY i) = ΩY , cov(eeeXi, eeeY i) = ΩXY , and cov(eeeY i, eeeXi) = ΩY X . Write the sample mean

vectors XXX = n−1
∑n

i=1XXX i, YYY = n−1
∑n

i=1YYY i, and ZZZ = n−1
∑n

i=1ZZZi. Representing the entire

paired sample data with the n× 2p data matrix ZZZ = (ZZZ1, . . . ,ZZZn)
T , we can easily compute

the 2p × 2p sample covariance matrix using SZ = (n − 1)−1
∑n

i=1(ZZZi − ZZZ)(ZZZi − ZZZ)T =

(n − 1)−1 (ZZZ − n−1JnZZZ)
T
(ZZZ − n−1JnZZZ), where Jn stands for the n × n matrix whose all

elements are 1. Let SX and SY be the p × p diagonal matrices and SXY and SY X be the

p×p off-diagonal matrices of SZ . It is straightforward to see that SX and SY are the sample

covariance matrices of X and Y samples, respectively. In a permutation framework, the

factor (n− 1)−1 in SZ may be omitted.
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Hotelling’s T 2 test is the most common and popular test for the equality of mean vectors

in two sample problems. It is also asymptotically the most powerful invariant test when

homoscedastic data are normally distributed. Since we have paired data, we consider the

Hotelling’s T 2 statistic to test H0 : µX = µY based on the one-sample DDDi = XXX i − YYY i,

i = 1, 2, . . . , n. Write DDD = n−1
∑n

i=1DDDi, and SD = (n− 1)−1
∑n

i=1(DDDi −DDD)(DDDi −DDD)T . The

statistic for testing mean equality is defined as

T1 = DDD
T
S−1
D DDD =

(
XXX − YYY

)T
(SX + SY − SXY − SY X)

−1 (XXX − YYY
)
. (1)

For the test of hypothesis (i), we assume that the joint distribution of (XXX,YYY ) is symmetric

around (µX ,µY ). Under this assumption, the distribution of DDDi (and hence the distribution

of T1) is invariant to the permutation of XXX i and YYY i when H0 : µX = µY is true, as shown

in Section 2.3. This assumption is not needed for the other two tests. It is easy to see that

the distribution of T1 is invariant with respect to affine transformations X̃XX = AXXX + b and

ỸYY = AYYY + b for a fixed p× p matrix A of real constants with a nonzero determinant and a

p× 1 vector b of constants (Anderson, 2003). For normal data, T1 follows an F-distribution.

We straightforwardly test H0 : ΩX = ΩY by comparing the sample covariance matrices

and thus propose the test statistic

T2 =
∣∣ log |SX | − log |SY |

∣∣, (2)

where |A| denotes the determinant of A. The null distribution of T2 is invariant to the

permutation of XXX i − µX and YYY i − µY and an approximate permutation procedure, where

population mean vectors are replaced by original sample mean vectors, is proposed in Sec-

tion 2.3 to compute T2.

We propose to combine T1 and T2 to test for H0 : µX = µY and ΩX = ΩY , and

we consider the Tippett type combing function (see Chung and Fraser, 1958; Hirotsu, 1986,

1998; Pesarin, 2001). Let λ1 and λ2 be the p-values of the tests T1 and T2, respectively. One

challenge is to find the combined rejection region of the two tests: {T1 > c1} ∪ {T2 > c2}.
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We resolve the difficulty by restricting our class of rejection regions to the sets that satisfy

P(T1 > c1) = k1γ and P(T1 > c1) = k2γ for fixed k1 and k2. The coefficients k1 and k2 can

be viewed as “tuning” parameters chosen by investigators. To define γ, suppose we observe

test statistics To
1 and To

2, then we combine the p-values of T1 and T2 using

γ = min {P(T1 > To
1)/k1, P(T2 > To

2)/k2} = min (λ1/k1, λ2/k2) .

We reject H0 : µX = µY and ΩX = ΩY if γ 6 δ. The problem thus becomes finding suitable

δ such that the significance level, say α, can be attained.

When data are normally distributed and H0 : µX = µY is true, testing statistics T1

and T2 are independent of each other, since T1 is essentially the multivariate one-sample

test statistic that follows an F-distribution. Thus the p-values λ1 = P(T1 > To
1) and

λ2 = P(T2 > To
2) have independent uniform distributions over the unit interval [0, 1] under

the null hypothesis H0 : µX = µY and ΩX = ΩY for the combined test and under normality.

However, data may not always be normal in reality, and when this happens, λ1 and λ2 are

uniformly distributed but no longer independent of each other under the H0. Thus,

P(γ 6 δ) = P(λ1 6 k1δ or λ2 6 k2δ) = P(λ1 6 k1δ) + P(λ2 6 k2δ)− P(λ1 6 k1δ, λ2 6 k2δ)

= (k1 + k2)δ − τk1k2δ
2,

where τ = P(λ1 6 k1δ, λ2 6 k2δ)
/
{P(λ1 6 k1δ

)
· P

(
λ2 6 k2δ)}. Obviously, τ = 1 whenλ1

and λ2 are independent. If P
(
λ1 6 k1δ) = 0 or P

(
λ2 6 k2δ) = 0, τ = 0. Hence, to achieve

the significance level α, the choice of δ is

δ =
[
k1 + k2 −

{
(k1 + k2)

2 − 4ατk1k2
}1/2

]/
(2τk1k2).

In Section 2.3, we propose a permutation procedure to estimate δ and τ . The null hypothesis

H0 : µX = µY andΩX = ΩY is rejected if γ 6 δ, or equivalently, if the corresponding p-value

is less than or equal to a pre-specified significance level of the test α, i.e., (k1+k2)γ−τk1k2γ
2 6

α. We denote this proposed combined test by CT(k1, k2).
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We choose (k1, k2) = (1, 1) to test the simultaneous equalities of both mean vectors

and covariance matrices, so we obtain γ = min(λ1, λ2) and the p-value of the test 2γ −

γ2τ . In addition, more general setup of the hypothesis (iii) can be accommodated in the

proposed combined test framework and other values of (k1, k2) may also be selected based

on the hypothesis of interest. For example, one may specify a larger value for k1 than k2

if the hypothesis (iii) is specified such that a more stringent criterion is imposed on the

mean equality than the sameness of covariance matrices. Furthermore, T1 and T2 may

be individually included in the combined framework as two extreme cases. We can choose

(k1, k2) = (1, 0) to test the equality of mean vectors; in this case both γ and the p-value

equal to λ1, and the test is essentially T1. Similarly, we can set (k1, k2) = (0, 1) to test the

homogeneity of covariance matrices; then both γ and the p-value are λ2, and the test is the

same as T2. Obviously, neither T1 nor T2 has existing δ.

2.2 Unbiasedness and Consistency

In this section, we aim to show theoretical properties, the asymptotic unbiasedness and the

consistency, of the proposed combined test CT. The theoretical derivation partially relies

on the Central Limit Theorem of sample mean vector and sample covariance matrix, which

requires the existence of the fourth moment of ZZZi = (XXXT
i ,YYY

T
i )

T . Let θ be the parameters of

the model, which include µ and Ω. Let ϕn(ZZZn) : Rn×(2p) → {0, 1} be the proposed combined

test function for testing H0 : µX = µY and ΩX = ΩY against its alternative hypothesis H1

that the null hypothesis is not true; that is, ϕn(ZZZn) is 1 if ZZZn is in the rejection region, or

equivalently the observed p-value is less than or equal to α, and 0 otherwise. We prove the

following two properties of the test ϕn(ZZZn)

• asymptotic unbiasedness: sup
θ∈H0

Eθ {ϕn(ZZZn)} 6 α 6 inf
θ∈H1

Eθ {ϕn(ZZZn)}, that is, the power

of the test achieves its minimum at the null hypothesis, as n → ∞; and
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• consistency: if θ ∈ H1, lim
n→∞

ξθ,n = 0, where ξθ,n = 1 − Eθ {ϕn(ZZZn) = 1}, that is, the

test reaches its critical region with probability one if the alternative hypothesis is true,

as n → ∞.

We start by showing that the tests T1,n and T2,n are consistent. We assume in Theorems

1 and 2 that the fourth moment of ZZZi =
(
XXXT

i ,YYY
T
i

)T
exists.

Theorem 1. Tests T1,n and T2,n defined in Section 2.1 are consistent.

Proof. We first prove the consistency of T1,n for testing H0 : µX = µY against H1 : µX ̸=

µY . Let DDDi,n = XXX i,n − YYY i,n. Then the sample mean vector and covariance matrix of the

DDDn sample are DDDn = XXXn − YYY n and SDn = SXn + SYn − SXnYn − SYnXn , respectively. Here

we assume SDn to be positive definite for any sample size n and sample data (XXX,YYY ). Write

µD = µX − µY . From the Central Limit Theorem, we have

S
−1/2
Dn

√
n
(
DDDn − µD

)
(3)

converges in distribution to the standard p-dimensional multivariate normal distribution

as n → ∞. Under H1 : µX ̸= µY , nT1,n has an asymptotically noncentral chi-

squared distribution with degrees of freedom p and non-centrality parameter ∆n = n µT
D

(ΩX +ΩY −ΩXY −ΩY X)
−1 µD. The probability

ξ
(1)
θ,n = P

(
nT1,n 6 χ2

α,p

∣∣θ ∈ H1

)
= P

(
nT1,n +∆n 6 χ2

α,p

∣∣θ ∈ H0

)
(4)

converges to 0 as n → ∞. Therefore, T1,n is consistent.

Next we prove the consistency of T2,n for testing H0 : ΩX = ΩY against H1 : ΩX ̸= ΩY .

Notice that (n− 1)SZn = (ZZZn − n−1JnZZZn)
T
(ZZZn − n−1JnZZZn) = ZZZT

n (In − n−1Jn)ZZZn where In

is the n×n identity matrix. Since the matrix In−n−1Jn is an idempotent matrix with rank

n− 1, the sum of squares (n− 1)SZn has the Wishart distribution with parameters Ω, n− 1

10



and 2p, in asymptotic. Thus,
√
nSZn converges in distribution to the normal distribution

with mean matrix Ω and finite covariance matrix, say Ψ, as n → ∞. By the continuity

mapping theorem, we have that g(SZn) =
√
nT2,n =

√
n
∣∣ log |SXn| − log |SYn|

∣∣ converges

in distribution to the normal distribution with mean g(Ω) =
√
n
∣∣ log |ΩX | − log |ΩY |

∣∣ and
covariance matrix Q = {∂g(Ω)/∂Ω}T Ψ {∂g(Ω)/∂Ω} which is assumed finite. Under H1,

g(Ω) ∼ O(
√
n). Thus, the probability

ξ
(2)
θ,n = P

(√
nT2n 6 Cα,n

∣∣θ ∈ H1

)
= P

{√
nT2,n + g(Ω) 6 Cα,n

∣∣θ ∈ H0

}
, (5)

where Cα,n is the critical value at sample size n and is O(1), converges to 0 as n → ∞. So,

T2,n is consistent.

Theorem 2. The combined test CT(k1, k2) defined in Section 2.1 is asymptotically unbiased

and consistent.

Proof. At first, we introduce three conditions that the combined test statistic, or equivalently

its p-value should satisfy for asymptotic unbiasedness and consistency. Recall the p-value of

the suggested combined test CT(k1, k2) is γ = γ(λ1, λ2) = min (λ1/k1, λ2/k2), where λ1 and

λ2 are the p-values of the tests T1 and T2, and k1 and k2 are given constants. It is easy to

justify that the combing function γ(λ1, λ2) satisfies the following properties:

(P1) γ(λ1, λ2) is a non-decreasing function of each argument.

(P2) γ(λ1, λ2) decreases to 0, if one of λl, l = 1, 2, decreases to 0.

(P3) The p-values are well defined and non-trivial. In other words, the critical value is finite

and non-trivial for every choice of significance level.

Similar properties of combining functions have been discussed by Goutis et al. (1996) and

Pesarin (2001), among others.
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We first prove that CT(k1, k2) is asymptotically unbiased. Let ZZZn(∆n) be random vari-

ables from model (3) with non-centrality ∆n, and let λ1{ZZZn(∆n)} be the p-value using the

testing statistic T1,n. Then, (3) and (4) imply the stochastic ordering in λ1{ZZZn(∆n)} for

sufficiently large n; that is, if ∆n 6 ∆′
n,

P [λ1{ZZZn(∆n)} 6 z] 6 P [λ1{ZZZn(∆
′
n)} 6 z] , (6)

for every z ∈ (0, 1). Thus,

α = P [λ1{ZZZn(0)} 6 α] 6 P [λ1{ZZZn(∆n)} 6 α] .

Hence T1,n is unbiased in asymptotic. Likewise, we have similar stochastic ordering to (6)

for T2,n with ∆n replaced by g(Ω) in the p-value λ2 [ZZZn{g(Ω)}]. This stochastic ordering

relationship implies the asymptotic unbiasedness of T2,n. Since T1,n and T2,n are marginally

unbiased in asymptotic, by the non-decreasing property of the combination function γ(λ1, λ2)

(P1), we have γ [λ1{ZZZn(∆n)}, λ2] is stochastically larger than γ [λ1{ZZZn(0)}, λ2], and similarly,

γ (λ1, λ2 [ZZZn{g(Ω)}]) is stochastically larger than γ [λ1, λ2 {ZZZn(0)}]. Hence, the asymptotic

unbiasedness of CT(k1, k2) is achieved.

Next, we show consistency ofCT(λ1, λ2). To be consistent, it must reach its critical region

with probability one, if at least one of the two sub-alternative hypotheses H(1)
1 : µX ̸= µY

and H(2)
1 : ΩX ̸= ΩY is true. By the consistency of the partial tests T1,n and T2,n as stated

in Theorem 1, if either H(l)
1 is true, λl converges to 0 with probability one, for l = 1, 2. Thus

by the properties (P2) and (P3), γ(λ1, λ2) converges to 0 with probability one as n → ∞.

2.3 Permutation procedure

Without imposing distributional assumptions onXXX or YYY , we apply a nonparametric method

— a permutation procedure to obtain reference distributions for the tests and to estimate

their finite-sample p-values. Notice that an assumption behind a permutation test is that the
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observations are exchangeable under the null hypothesis. We first discuss how the framework

is set up to satisfy this requirement and then describe the proposed permutation procedure.

Let π = {π(1), . . . , π(n)}, where each π(i) is 0 or 1, i = 1, . . . , n. Let Π denote the

collection of all possible such π. For each random permutation π, the permuted paired

sample {XXX(π),YYY (π)} is defined as that the observations for the ithe subject become

{XXX(π)i,YYY (π)i} =

 (XXX i,YYY i) if π(i) = 0,

(YYY i,XXX i) if π(i) = 1.

For each permuted sample {XXX(π),YYY (π)}, we compute the test statistics T1(π) and T2(π).

When the global null hypothesis H0 : µX = µY and ΩX = ΩY is true, data exchangeability

is satisfied.

Recall T1 depends only on the differences DDDi rather than on the paired data (XXX i,YYY i)

directly. For T1, instead of imposingΩX = ΩY , we preserve the exchangeability condition by

assuming symmetric joint distribution of paired data. As proven in the Appendix A.1, under

H0 : µX = µY , the null distribution of the test statistic T1 is invariant to the permutation

π when the joint distribution of (XXX i,YYY i) is symmetric.

The proposed permutation test forT2 is based on the permutation ofXXX i−µX and YYY i−µY ,

without requiring µX = µY . Appendix A.2 provides the proof that underH0 : ΩX = ΩY , the

null distribution of T2 is invariant to the permutation π. In practice, the mean vectors µX

and µY are unknown. We propose to approximate the permutation test T2 by substituting

the population means with their original sample mean vectors. To be specific, for each

permutation π ∈ Π, we approximate XXX(π)i − µX and YYY (π)i − µY as XXX∗(π)i = XXX(π)i −XXX
o

and YYY ∗(π)i = YYY (π)i − YYY
o
with XXX

o
and YYY

o
being the sample mean vectors of the original

paired data, respectively, when computing T2(π).

The proposed permutation procedure is summarized as follows:

(a) Compute the observed test statistics To
1 and To

2 from the original data.

(b) For each permutation π ∈ Π, compute T1(π) of the permuted sample {XXX(π),YYY (π)}
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and compute T2(π) based on the sample {XXX∗(π),YYY ∗(π)} with XXX∗(π)i = XXX(π)i −XXX
o

and YYY ∗(π)i = YYY (π)i − YYY
o
, where XXX

o
and YYY

o
are from the original paired samples and

thus fixed.

(c) The p-value of the test T1 is estimated by λ̂1 =
∑

π∈Π 1 {T1(π) > To
1} /|Π|, where 1(·)

stands for the indicator function and |Π| is the number of all possible permutations π

in Π. The p-value of the test T2 is estimated by λ̂2 =
∑

π∈Π 1 {T2(π) > To
2} /|Π|. The

parameter τ is approximated by

τ̂ = |Π|
∑

π∈Π 1 {T1(π) > To
1,T2(π) > To

2}∑
π∈Π 1 {T1(π) > To

1} ·
∑

π∈Π 1 {T2(π) > To
2}
.

Finally, the p-value of the combined testCT(k1, k2) is estimated by (k1+k2)γ̂−k1k2τ̂ γ̂
2,

where γ̂ = min(λ̂1/k1, λ̂2/k2).

In practice, |Π| = 2n can be very large if n is large. When there are too many possible or-

derings of the data to conveniently allow complete enumeration, the computational intensity

may be unfeasible. To reduce the computational burden when this happens, we modify the

procedure using an asymptotically equivalent technique by Monte Carlo sampling:

(b)-1 Generate K random permutations using Bernoulli random numbers. That is, to obtain

a permuted sample, generate n independent random numbers bi, i = 1, . . . , n, from the

Bernoulli distribution with probability 0.5, and permute XXX i and YYY i only if bi = 1. Let

π(k) label the kth such generated permutation, k = 1, . . . , K.

(c)-1 Calculate λ̂1 =
∑K

k=1 1
{
T1(π

(k)) > To
1

}
/K, λ̂2 =

∑K
k=1 1

{
T2(π

(k)) > To
2

}
/K, and

τ̂ = K

∑K
k=1 1

{
T1(π

(k)) > To
1,T2(π

(k)) > To
2

}∑K
k=1 1 {T1(π(k)) > To

1} ·
∑K

k=1 1 {T2(π(k)) > To
2}
.

Here, K is small, relative to |Π|. If the p-value is 0.05, the approximate standard error of

the estimated p-value from K = 10, 000 random permutations is 0.0022.
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3 Simulation

Monte Carlo samples were generated to evaluate the performances of the proposed test proce-

dure, including the size (i.e., type I error probability) and power (i.e., one minus type II error

probability) of the three tests. We compare the proposed tests to their counterparts using

likelihood ratio tests which are derived under the assumption that all the data are normally

distributed. Lim, et al. (2010) showed the finite-sample distributions of the likelihood ratio

test (LRT) statistics and proposed a parametric bootstrap procedure for implementation

without structural assumptions on the covariance matrices. They also showed that when the

normality assumption is met, the LRT statistics have the usual asymptotic Chi-squared dis-

tributions under the null hypotheses. In the comparisons, we include both the finite-sample

LRTs using the re-sampling procedure and the asymptotic Chi-squared tests, with the nor-

mality assumption imposed. To investigate performance under different true distributions,

we considered multivariate normal distributions and two non-normal scenarios: multivariate

bimodal mixture of two normals with mixing proportion 50% and multivariate student’s t

distributions with 10 degrees of freedom.

We generated paired samples ZZZi = (XXXT
i ,YYY

T
i )

T , i = 1, . . . , n, from a (2p)-variate distribu-

tion with mean vector µ and covariance matrix Ω, where bothXXX and YYY are either normal, or

bimodal mixture of normals, or t10. We let µ = (µT
X ,µ

T
Y )

T with µX = µX1p and µY = µY 1p

for 1p being the p × 1 vector of 1’s; and Ω with diagonal matrices that have compound

symmetry structures ΩX = σ2
X {(1− ρX)Ip + ρXJp} and ΩY = σ2

Y {(1− ρY )Ip + ρY Jp} and

off-diagonal matrices ΩXY = ρXY Jp and ΩY X = ρY XJp, for Jp denoting the p×p matrix with

all entries equal to 1. In such simulation setup, µX = µY implies µX = µY , and ΩX = ΩY

happens when both σ2
X = σ2

Y and ρX = ρY are satisfied. The within-population correlation is

determined by ρX and ρY in ΩX and ΩY , respectively. The parameters ρXY and ρY X control

the dependence between the two samples which are uncorrelated only when ρXY = ρY X = 0.

In the simulation results reported here, p = 5, µX = 0, σ2
X = 1, ρX = ρY = 0.5, and
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ρXY = ρY X = 0.3. We investigated the performances of the tests for various null and al-

ternative situations created by different values of µY − µX and different values of σ2
Y − σ2

X .

We also examined the outcomes for different sample sizes. We generated 500 Monte Carlo

samples for each setup with a choice of µY (= 0, 0.5, 1), a choice of σ2
Y (= 1, 1.5, 2), and a

choice of sample size n(= 15, 25, 50). For each data set we tested the three hypotheses (i)–

(iii) respectively using the proposed T1, T2 and CT as described in Section 2.3, as well as

their corresponding finite-sample LRT and asymptotic Chi-squared test based on LRT (Lim,

et al., 2010). As p = 5, the asymptotic Chi-squared tests have degrees of freedom 5, 15 and

20 for the hypotheses (i)–(iii), respectively. A null hypothesis is rejected if a p-value is no

more than the significance level α = 0.05. The empirical rejection probability of a test was

calculated as the proportion of rejections from 500 replicates.

Table 1 provides the empirical rejection probabilities of the T1, LRT and χ2
5 for testing

H0 : µX = µY . When the null hypothesis is true (µY − µX = 0), regardless of the actual

distribution of data and sample size, the empirical sizes of T1 are close to the nominal

0.05 level; while the LRT severely underestimates the 0.05 level when sample size is very

small and the T1 still slightly outperforms the LRT for larger n. As the difference between

µX and µY increases, the T1 demonstrates more power in detecting the inequality between

the mean vectors and is more powerful than the LRT. From Table 2 which displays the

empirical rejection probabilities of the T2, LRT and χ2
15 for testing H0 : ΩX = ΩY , the T2

attains the nominal 0.05 level under the null hypothesis (r = σ2
Y /σ

2
X = 1), no matter data

are normal, bimodal, or have heavy tails and regardless of the sample size. The empirical

size of the LRT is way below the nominal level for n = 15 regardless of the underlying

distribution. Under departures from normality, especially when data present heavy tails,

the LRT can show degradation of performance with empirical size above the nominal level

for larger n, verifying its sensitivity to non-normality. The greater difference between ΩX

and ΩY (deviation of r from 1), the more powerful the T2 is for detecting the heterogeneity
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of covariance matrices in general. When data are normally distributed under which the

LRT is valid, T2 are substantially more powerful than the LRT. Table 3 gives the empirical

rejection probabilities of the CT, LRT and χ2
20 for testing H0 : µX = µY and ΩX = ΩY . As

expected, CT achieves the nominal level when the null hypothesis is true (µY −µX = 0 and

r = σ2
Y /σ

2
X = 1), in spite of data distribution and sample size; while the LRT underestimates

the nominal level when n = 15. Again, the LRT is sensitive to violations of normality in

data, evident by having remarkably liberal empirical size for t distributions for larger n.

Under normality, the CT shows better power than the LRT in detecting an alternative. As

the alternative hypothesis becomes more pronounced, the CT gains greater power. From all

of the three Tables, if a null hypothesis is true, the empirical size of the Chi-squared test is

generally fairly larger than 0.05, and its performance worsens with more liberal empirical size

especially for t distributions. The power of the Chi-squared tests is generally unreliable due

to its unacceptably liberal empirical size. Similar conclusions have been drawn for n = 100

with improved performances of the LRTs and Chi-squared tests as expected. In another

simulation not reported here where bothXXX and YYY samples were generated from multivariate

asymmetric bimodal mixture of two normals with mixing proportion 70%, all three proposed

tests also had satisfactory performance similar to the above.

Overall, T1, T2 and CT demonstrate good performance regardless of the data distri-

bution. Since their empirical power increases as the distance between the alternative and

the null hypotheses gets larger, they have monotone power functions, which implies their

unbiasedness. Their power also increases with sample size, suggesting the consistency of the

tests. These numerical results complement the theory in Section 2.2.
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4 Applications

4.1 Tooth size example

We apply the proposed tests to the dental data set introduced in Section 1. We focus on the

tooth size measurements from 179 men who had natural normal occlusion. The goal is to

assess whether the tooth size is symmetric between the left and right sides around central

incisors in either maxilla or mandible using the proposed tests.

Denote the maxilla tooth size measurements of subject i by XXXu
i = (Xu

i1, . . . , X
u
i7)

T and

YYY u
i = (Y u

i1, . . . , Y
u
i7)

T for the left and right sides respectively from central incisor to second

molar in the upper jaw, i = 1, . . . , 179. Let µu
X and Ωu

X be the population mean and

covariance forXXXu, and µu
Y and Ωu

Y be the population mean and covariance for YYY u. The three

symmetry hypotheses to be tested are µu
X = µu

Y , Ω
u
X = Ωu

Y , and simultaneous µu
X = µu

Y and

Ωu
X = Ωu

Y . Similarly, we denote mandibular tooth size measurements by XXX l and YYY l and test

the symmetry hypotheses µl
X = µl

Y , Ω
l
X = Ωl

Y , and simultaneous µl
X = µl

Y and Ωl
X = Ωl

Y .

We apply the tests to the maxilla and mandible data sets separately.

The estimated p-values of T1, T2 and CT implemented using the proposed permutation

procedure are reported in Table 4, along with corresponding LRT and asymptotic Chi-

squared tests. The proposed test T1 suggests that µu
X ̸= µu

Y and µl
X ̸= µl

Y ; the LRT and

Chi-squared tests give similar conclusions. At the significance level 0.05, the proposed testT2

suggests Ωu
X = Ωu

Y and Ωl
X = Ωl

Y ; but the LRT and Chi-squared tests show a disagreement

with the suggestion of Ωl
X ̸= Ωl

Y . Complementing the results of T1, the combined test

CT provide significant p-values for both maxilla and mandible; while the LRT and Chi-

squared tests draw a similar conclusion for mandible, but are insignificant when testing for

simultaneous equalities of mean vectors and covariance matrices for maxilla.

The LRT and Chi-squared tests rely on normality of data. Their disagreement with T2 is

due to departures from normality in the data. For example, in mandible, the sample skewness
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and kurtosis of left central incisors (X l
i1) are 4.15 and 37.78, respectively. The right first

molars in mandible (Y l
i6) have sample skewness −1.46 and kurtosis 8.29. These violations

of normality cause the LRT and Chi-squared tests to be liberal and reject H0 : Ωl
X = Ωl

Y ,

conflicting with the test T2 which is insensitive to departures from normality. Such behavior

of normality violation is less pronounced for the teeth size measurements in maxilla, except

a mild departure in right first molars (Y u
i6) whose sample skewness and kurtosis are −1.06

and 6.24, respectively. This explains that the conclusions of the LRT and Chi-squared tests

coincide with theT2 in general for maxilla, althoughT2 shows a borderline significant p-value

of 0.0722.

Overall, use of the proposed tests, unlike the competitors, offers the analyst assurance of

credible results. Based on the proposed tests T1, T2 and CT, we conclude that the mean

tooth size profiles differ between the left and right sides in either maxilla or mandible of

these men. The dispersions of tooth sizes on the two sides are the same in mandible, and

the dispersions are nearly the same between left and right sides in maxilla. If we presume

that the tooth size should be genetically symmetric, the asymmetry in mean tooth size

profiles in both maxilla and mandible of male adults might be conjectured to be influenced

by environmental effects and this surely requires further investigation to justify.

4.2 Gene example

To illustrate the usefulness of the proposed method for testing differentially structured gene

sets in microarray studies discussed in Section 1, we apply the proposed permutation method

to a microarray expression data set with paired tumor and normal tissue samples from 53

primary prostate cancer patients. This data set was originally generated on Affymetrix

Human Genome U95C Arrays to study gene expression alteration in prostate cancer (see Yu

et al., 2004, for the experimental details), and is downloadable with the accession number

GSE6919 via the NCBI Gene Expression Omnibus repository (Barrett et al., 2005). From
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the Molecular Signatures Database (http://www.broadinstitute.org/gsea/msigdb), we

downloaded three rather small-size gene sets that were defined by mining large collections of

cancer-oriented microarray data (Subramanian et al. 2005). The sizes of the gene sets vary

from n = 24 to 39, and the expression levels range from p = 9 to 12 genes. Table 5 reports

detailed information on these gene sets.

For a given gene set, denote the expression level of subject (or array) i by XXX i =

(Xi1, . . . , Xip)
T and YYY i = (Yi1, . . . , Yip)

T for the normal and tumor tissues, respectively. Let

µX and ΩX be the population mean and covariance forXXX, and µY and ΩY be the population

mean and covariance for YYY . We test the three symmetry hypotheses: µX = µY , ΩX = ΩY ,

and simultaneous µX = µY and ΩX = ΩY . Because these gene sets are known to be related

with prostrate cancer and be differentially expressed in mean between normal and tumor

tissues, our main interest is in testing ΩX = ΩY , which will elucidate the difference between

dependent structures. The test results in Table 6 show that the dependent structures differ

between normal and tumor tissues in gene sets GCM FANCL and GCM CASP2, while there

is boarder-line differences between the normal and tumor tissue dependent structures in gene

set GNF2 ICAM3. However, the results based on LRT and asymptotic Chi-squared tests

are quite liberal.
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The estimated sample concentration matrices for gene set GCM FANCL are

Ω̂−1
X =

539.1 −6.3 −38.0 −69.9 56.0 −104.8 69.8 −47.6 −68.9 229.8

−6.3 837.2 60.7 −25.1 −185.9 280.8 −93.5 −37.3 −218.5 −380.2

−38.5 60.7 1097.0 −59.8 −9.1 −105.3 −42.4 −421.5 −21.2 −244.2

−69.9 −25.1 −59.8 630.4 −88.6 −72.9 −98.4 79.0 115.0 −423.9

56.6 −185.9 −9.1 −88.6 698.5 −357.6 138.6 −158.7 −41.3 357.1

−104.8 280.8 −105.3 −72.9 −357.6 951.4 −255.5 134.0 114.7 −491.3

69.8 −93.5 −42.4 −98.4 138.6 −255.5 1051.9 −105.6 −439.0 −162.1

−47.6 −37.3 −421.5 79.0 −158.7 134.0 −105.6 723.7 −84.1 260.7

−68.9 −218.5 −21.2 115.0 −41.3 114.7 −439.0 −84.1 1723.7 −930.6

229.8 −380.2 −244.2 −423.9 357.1 −491.3 −162.1 260.7 −930.6 3154.5


and

Ω̂−1
Y =

399.7 −168.0 150.8 −6.1 −6.3 −43.5 121.7 106.7 −195.9 23.1

−168.0 3399.1 395.6 −263.6 69.1 −253.0 −375.4 194.3 −1968.1 −526.6

150.8 395.6 3276.4 −93.0 13.1 34.5 151.7 −130.7 −3115.1 108.5

−6.1 −263.6 −93.0 368.6 −0.4 40.0 53.7 −107.6 189.0 −11.6

−6.3 69.1 13.1 −0.4 372.0 −131.7 108.6 68.2 −164.8 76.2

−43.5 −253.0 34.5 40.0 −131.7 808.0 −331.7 −263.2 243.2 17.7

121.7 −375.4 151.7 53.7 108.6 −331.7 1935.2 297.2 −1541.7 138.5

106.7 194.3 −130.7 −107.6 68.2 −263.2 297.2 958.2 −920.7 45.1

−195.9 −1968.1 −3115.1 189.0 −164.8 243.2 −1541.7 −920.7 6582.1 31.4

23.1 −526.6 108.5 −11.6 76.2 17.7 138.5 45.1 31.4 299.8



.

It is easy to see that the estimates ofΩY elements are larger than those ofΩX in general. This

implies changes in dependent structures between normal and tumor tissues, and is consistent

with the significance of the proposed test T2. Moreover, to illustrate the differences in

dependent structure, we applied the graphical lasso method studied by Yuan and Lin (2007)

and Friedman et al. (2008) to estimating the sparse concentration matrices of the normal
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and tumor genes in gene set GCM FANCL. The tuning parameter in the graphical lasso was

chosen such that the BIC-type criterion of Yuan and Lin (2007) was minimized. Figure 1

plots the estimated dependent structures of the normal and the tumor genes in gene set

GCM FANCL, where the 10 genes in the gene set are represented by the 10 nodes, and

the solid lines between nodes indicate two genes are conditionally dependent to each other

given all other genes. It is shown that many new edges appear in the graph of tumor genes,

which is in consistency with the findings from the proposed tests and with the observation

of estimated concentration matrices.

5 Conclusion

We have presented tests for three hypotheses in multivariate paired data: equality of mean

vectors, sameness of covariance matrices, and simultaneous equalities of mean vectors and

covariance matrices. A main feature of the proposed tests is that they need neither a covari-

ance structural nor a distributional assumption on the data, except that the permutation

test for mean vector equality needs the joint distribution of the paired data to be sym-

metric. We have proposed to combine the two partial tests into a test for simultaneous

equalities of mean vectors and covariance matrices. The combined test has been proven to

be asymptotically unbiased and consistent in theory because the partial tests are consistent

and independent in asymptotic. A permutation procedure has been proposed to estimate

the reference distributions, which is easy to implement. In contrast to competing tests that

rely on the normality assumption of data and may provide misleading conclusions when

the assumption is violated, the proposed test yield sound performance in terms of attaining

valid nominal type I error probabilities under the null hypotheses and achieving appreciable

power in detecting various alternative hypotheses regardless of departures from normality.

Although the choice of the rejection region for the combined hypothesis is somewhat ad hoc,

the resulting test has demonstrated good numerical performances indicating its power and
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usefulness in practice. Its alternatives and properties are included in our future work. Reli-

able and comprehensive conclusions can be made when all three proposed tests are applied

together to a data set, as illustrated by simulation studies and the applications. In addition,

the proposed tests are constructed without the requirement that the correlation between the

two paired populations be symmetric, i.e., ΩXY and ΩY X are allowed to differ. This may

lead to the usefulness of adapting the proposed tests to situations, such as some microarray

studies where the assumption ΩXY = ΩY X have been found invalid.

The permutation test of mean equality, T1, requires symmetric joint distribution of

(XXX i,YYY i), while the permutation tests for sameness of covariance matrices and for simul-

taneous equalities of mean vectors and covariance matrices do not need such requirement.

A referee has helpfully showed in a small simulation that the test T1 can be problematic

under a violation of this assumption since the permutation principle of data exchangeability

is invalid. It may be interesting to study the sensitivity of T1 to departures from this as-

sumption. In this paper, we do not assume any structured covariance model for multivariate

paired observations within a subject. However, when repeated multivariate measurements

(or longitudinal data) for each subject are available, more detailed structured models such

as multivariate mixed effects models could be posited. Our strategy may be extended to

such structured covariance models for developing distribution-free tests, although the devel-

opment seems non-trivial and some efforts will be needed. These are included in our future

work.
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Appendix

A.1 Permutation invariance of T1

Recall DDDi = XXX i − YYY i. Define
(
X̃XX i, ỸYY i

)
≡ (−XXX i,−YYY i) and D̃DDi = X̃XX i − ỸYY i, then it is

straightforward that D̃DDi = YYY i −XXX i. For each permutation π ∈ Π, {XXX(π)i,YYY (π)i} is the

permutated paired sample for the ith subject. Let DDD(π)i =XXX(π)i − YYY (π)i, then

DDD(π)i =

 XXX i − YYY i =DDDi if π(i) = 0,

YYY i −XXX i = D̃DDi if π(i) = 1.

Suppose the joint distribution of (XXX i,YYY i) is symmetric around its mean (µX ,µY ) and the

null hypothesis H0 : µX = µY (= µ) is true. The joint distribution of (XXX i,YYY i) is symmetric
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about (µ,µ). Then the distribution of (XXX i−µ,YYY i−µ) is symmetric about (0,0). It follows

that (XXX i−µ,YYY i−µ) has the same distribution as {−(XXX i − µ),−(YYY i − µ)}=
(
X̃XX i + µ, ỸYY i + µ

)
.

This implies that the difference (XXX i − µ) − (YYY i − µ) = XXX i − YYY i and the difference

(X̃XX i + µ) − (ỸYY i + µ) = X̃XX i − ỸYY i have the same distribution, i.e., DDDi and D̃DDi have the

same distribution. The above can also be carried out by assuming µ = 0 without loss of

generality. Therefore, DDD(π)i has the same distribution as DDDi. The test statistic T1 depends

only on DDDi. It concludes that the distribution of T1 is invariant to the permutation π.

A.2 Permutation invariance of T2

The test T2 is based on the permutation ofXXX i−µX and YYY i−µY . Let µX = µY = 0 without

loss of generality for notational simplicity. Let I1(π) = {i : π(i) = 1} be the index set of

subjects whose XXX i and YYY i are permuted, and I0(π) = {i : π(i) = 0} analogous for those not

permuted. Define the random variables

U1 =

 ∑
i∈I1 XXX iXXX

T
i

∑
i∈I1 XXX iYYY

T
i∑

i∈I1 YYY iXXX
T
i

∑
i∈I1 YYY iYYY

T
i

 ,

U1(π) =

 ∑
i∈I1 XXX(π)iXXX(π)Ti

∑
i∈I1 XXX(π)iYYY (π)Ti∑

i∈I1 YYY (π)iXXX(π)Ti
∑

i∈I1 YYY (π)iYYY (π)Ti

 =

 ∑
i∈I1 YYY iYYY

T
i

∑
i∈I1 YYY iXXX

T
i∑

i∈I1 XXX iYYY
T
i

∑
i∈I1 XXX iXXX

T
i

 .

Under H0 : ΩX = ΩY , we know that
∑

i∈I1 XXX iXXX
T
i and

∑
i∈I1 YYY iYYY

T
i have the same distribu-

tion, thus U1(π) has same distribution as ∑
i∈I1 XXX iXXX

T
i

∑
i∈I1 YYY iXXX

T
i∑

i∈I1 XXX iYYY
T
i

∑
i∈I1 YYY iYYY

T
i

 .

We define U0 and U0(π) for I0 analogously. It is obvious that the distribution of U0(π) is

identical to that of U0. Consequently, U0(π) +U1(π) has the same null distribution as ∑
iXXX iXXX

T
i

∑
i∈I0 XXX iYYY

T
i +

∑
i∈I1 YYY iXXX

T
i∑

i∈I0 YYY iXXX
T
i +

∑
i∈I1 XXX iYYY

T
i

∑
iYYY iYYY

T
i

 .

Since T2(π) involves only the diagonal matrices of U0(π) + U1(π), it follows that the null

distribution of T2 is invariant to the permutation π.

28



Table 1: Empirical rejection probabilities for testing the equality of mean vectors (H0 : µX =

µY ) of multivariate paired populations at level α = 0.05. µX = 0; σ2
X = 1; ρX = ρY = 0.5;

ρXY = ρY X = 0.3; n is sample size; T1: proposed permutation test for equality of mean

vectors; LRT: finite-sample likelihood ratio test; χ2
5: asymptotic Chi-squared test of the

likelihood ratio statistic with 5 degrees of freedom.

µY − µX = 0 µY − µX = 0.5 µY − µX = 1

( r = σ2
Y /σ

2
X) r = 1 r = 1.5 r = 2 r = 1 r = 1.5 r = 2 r = 1 r = 1.5 r = 2

Multivariate Normal distributions

n = 15 T1 0.05 0.04 0.05 0.25 0.14 0.16 0.80 0.55 0.51

LRT 0.00 0.01 0.01 0.07 0.04 0.04 0.29 0.13 0.13

χ2
5 0.45 0.40 0.50 0.78 0.72 0.77 0.99 0.97 0.95

n = 25 T1 0.05 0.07 0.04 0.55 0.36 0.27 1.00 0.95 0.89

LRT 0.02 0.02 0.01 0.31 0.22 0.14 0.97 0.80 0.67

χ2
5 0.20 0.20 0.23 0.82 0.69 0.66 1.00 1.00 0.99

n = 50 T1 0.05 0.05 0.04 0.93 0.78 0.63 1.00 1.00 1.00

LRT 0.03 0.03 0.02 0.89 0.70 0.53 1.00 1.00 1.00

χ2
5 0.10 0.13 0.12 0.97 0.89 0.82 1.00 1.00 1.00

Multivariate Bimodal Mixture of Normals

n = 15 T1 0.03 0.04 0.02 0.20 0.17 0.14 0.78 0.61 0.48

LRT 0.03 0.02 0.00 0.05 0.04 0.03 0.30 0.20 0.10

χ2
5 0.47 0.42 0.43 0.76 0.72 0.71 0.99 0.96 0.95

n = 25 T1 0.05 0.06 0.04 0.56 0.34 0.29 1.00 0.97 0.89

LRT 0.02 0.03 0.01 0.32 0.16 0.16 0.96 0.82 0.76

χ2
5 0.20 0.20 0.24 0.85 0.68 0.65 1.00 0.99 0.98

n = 50 T1 0.06 0.05 0.05 0.92 0.77 0.62 1.00 1.00 1.00

LRT 0.04 0.04 0.03 0.88 0.70 0.52 1.00 1.00 1.00

χ2
5 0.10 0.12 0.11 0.96 0.88 0.81 1.00 1.00 1.00

Multivariate t10 distributions

n = 15 T1 0.06 0.05 0.06 0.24 0.22 0.15 0.63 0.62 0.41

LRT 0.01 0.00 0.01 0.05 0.06 0.05 0.27 0.25 0.12

χ2
5 0.47 0.49 0.56 0.80 0.75 0.75 0.94 0.92 0.89

n = 25 T1 0.07 0.04 0.03 0.33 0.30 0.27 0.68 0.60 0.58

LRT 0.02 0.01 0.01 0.19 0.18 0.13 0.59 0.47 0.42

χ2
5 0.27 0.29 0.33 0.61 0.59 0.61 0.86 0.78 0.77

n = 50 T1 0.05 0.04 0.05 0.30 0.23 0.17 0.50 0.47 0.39

LRT 0.03 0.01 0.02 0.24 0.15 0.12 0.44 0.39 0.32

χ2
5 0.13 0.20 0.24 0.43 0.42 0.39 0.66 0.59 0.57



Table 2: Empirical rejection probabilities for testing the equality of covariance matrices

(H0 : ΩX = ΩY ) of multivariate paired populations at level α = 0.05. µX = 0; σ2
X = 1;

ρX = ρY = 0.5; ρXY = ρY X = 0.3; n is sample size; T2: proposed permutation test for

equality of covariance matrices; LRT: finite-sample likelihood ratio test; χ2
15: asymptotic

Chi-squared test of the likelihood ratio statistic with 15 degrees of freedom.

µY − µX = 0 µY − µX = 0.5 µY − µX = 1

( r = σ2
Y /σ

2
X) r = 1 r = 1.5 r = 2 r = 1 r = 1.5 r = 2 r = 1 r = 1.5 r = 2

Multivariate Normal distributions

n = 15 T2 0.04 0.29 0.71 0.06 0.34 0.70 0.06 0.25 0.73

LRT 0.00 0.00 0.09 0.00 0.00 0.01 0.00 0.00 0.01

χ2
15 0.40 0.51 0.68 0.36 0.51 0.67 0.39 0.45 0.71

n = 25 T2 0.06 0.53 0.94 0.04 0.54 0.94 0.05 0.52 0.93

LRT 0.09 0.23 0.56 0.07 0.22 0.58 0.08 0.24 0.58

χ2
15 0.16 0.35 0.74 0.13 0.36 0.74 0.17 0.37 0.75

n = 50 T2 0.05 0.87 1.00 0.04 0.88 1.00 0.06 0.90 1.00

LRT 0.08 0.47 0.95 0.06 0.49 0.95 0.06 0.50 0.96

χ2
15 0.08 0.51 0.96 0.08 0.53 0.96 0.08 0.53 0.97

Multivariate Bimodal Mixture of Normals

n = 15 T2 0.04 0.35 0.76 0.05 0.37 0.77 0.04 0.30 0.77

LRT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

χ2
15 0.36 0.45 0.66 0.36 0.46 0.67 0.30 0.48 0.66

n = 25 T2 0.07 0.63 0.95 0.07 0.63 0.96 0.03 0.63 0.98

LRT 0.06 0.17 0.51 0.06 0.19 0.51 0.05 0.20 0.54

χ2
15 0.11 0.30 0.70 0.12 0.33 0.67 0.11 0.33 0.71

n = 50 T2 0.04 0.91 1.00 0.05 0.93 1.00 0.05 0.95 1.00

LRT 0.05 0.38 0.96 0.05 0.45 0.95 0.04 0.40 0.96

χ2
15 0.06 0.41 0.98 0.05 0.48 0.97 0.06 0.43 0.98

Multivariate t10 distributions

n = 15 T2 0.03 0.25 0.61 0.07 0.30 0.65 0.05 0.26 0.67

LRT 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01

χ2
15 0.47 0.50 0.70 0.51 0.58 0.67 0.49 0.60 0.70

n = 25 T2 0.07 0.40 0.81 0.06 0.47 0.85 0.07 0.46 0.85

LRT 0.15 0.27 0.50 0.13 0.25 0.47 0.14 0.22 0.48

χ2
15 0.34 0.52 0.72 0.31 0.52 0.74 0.34 0.47 0.73

n = 50 T2 0.08 0.55 0.91 0.06 0.57 0.90 0.06 0.54 0.91

LRT 0.38 0.59 0.82 0.35 0.57 0.82 0.42 0.62 0.83

χ2
15 0.50 0.71 0.92 0.45 0.70 0.92 0.52 0.72 0.93



Table 3: Empirical rejection probabilities for testing the simultaneous equality of both mean

vectors and covariance matrices (H0 : µX = µY and ΩX = ΩY ) of multivariate paired

populations at level α = 0.05. µX = 0; σ2
X = 1; ρX = ρY = 0.5; ρXY = ρY X = 0.3;

n is sample size; CT: proposed permutation test for simultaneous equality of both mean

vectors and covariance matrices; LRT: finite-sample likelihood ratio test; χ2
20: asymptotic

Chi-squared test of the likelihood ratio statistic with 20 degrees of freedom.

µY − µX = 0 µY − µX = 0.5 µY − µX = 1

( r = σ2
Y /σ

2
X) r = 1 r = 1.5 r = 2 r = 1 r = 1.5 r = 2 r = 1 r = 1.5 r = 2

Multivariate Normal distributions

n = 15 CT 0.05 0.19 0.55 0.19 0.30 0.60 0.48 0.50 0.72

LRT 0.00 0.02 0.02 0.01 0.03 0.04 0.04 0.03 0.10

χ2
20 0.49 0.56 0.74 0.66 0.71 0.85 0.92 0.90 0.93

n = 25 CT 0.06 0.43 0.88 0.43 0.58 0.89 0.99 0.94 0.97

LRT 0.08 0.21 0.50 0.31 0.42 0.70 0.85 0.77 0.91

χ2
20 0.19 0.39 0.74 0.54 0.63 0.87 0.96 0.95 0.97

n = 50 CT 0.05 0.80 1.00 0.87 0.94 1.00 1.00 1.00 1.00

LRT 0.06 0.43 0.92 0.69 0.83 0.99 1.00 1.00 1.00

χ2
20 0.06 0.48 0.96 0.75 0.89 0.99 1.00 1.00 1.00

Multivariate Bimodal Mixture of Normals

n = 15 CT 0.05 0.28 0.66 0.15 0.31 0.67 0.65 0.59 0.77

LRT 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.05 0.05

χ2
20 0.46 0.53 0.72 0.66 0.67 0.80 0.89 0.88 0.92

n = 25 CT 0.07 0.50 0.93 0.42 0.61 0.94 1.00 0.97 1.00

LRT 0.06 0.18 0.49 0.27 0.36 0.62 0.85 0.82 0.92

χ2
20 0.14 0.31 0.71 0.52 0.59 0.81 0.96 0.96 0.98

n = 50 CT 0.05 0.89 1.00 0.87 0.97 1.00 1.00 1.00 1.00

LRT 0.06 0.34 0.95 0.67 0.83 0.98 1.00 1.00 1.00

χ2
20 0.07 0.39 0.96 0.72 0.87 0.99 1.00 1.00 1.00

Multivariate t10 distributions

n = 15 CT 0.04 0.20 0.49 0.21 0.29 0.55 0.54 0.60 0.68

LRT 0.00 0.01 0.03 0.01 0.00 0.04 0.05 0.03 0.08

χ2
20 0.57 0.63 0.77 0.75 0.79 0.79 0.88 0.94 0.91

n = 25 CT 0.08 0.32 0.77 0.27 0.52 0.83 0.64 0.70 0.87

LRT 0.20 0.27 0.51 0.33 0.38 0.59 0.56 0.58 0.70

χ2
20 0.36 0.54 0.76 0.57 0.69 0.83 0.81 0.83 0.91

n = 50 CT 0.09 0.48 0.89 0.27 0.54 0.86 0.46 0.65 0.89

LRT 0.37 0.60 0.83 0.49 0.63 0.86 0.67 0.77 0.88

χ2
20 0.53 0.73 0.92 0.62 0.77 0.93 0.79 0.86 0.96



Table 4: Data analysis results of p-values for the tooth size study. T1: proposed permutation

test for equality of mean vectors; T2: proposed permutation test for equality of covariance

matrices; CT: proposed permutation test for simultaneous equality of both mean vectors

and covariance matrices; LRT: finite-sample likelihood ratio test; χ2
d: asymptotic Chi-squared

test of the likelihood ratio statistic with d degrees of freedom.

H0 : µX = µY H0 : ΩX = ΩY H0 : µX = µY

and ΩX = ΩY

p-value T1 LRT χ2
7 T2 LRT χ2

28 CT LRT χ2
35

Maxilla .0003 .0013 .0002 .0722 .3067 .9538 .0006 .0802 .1368

Mandible .0003 .0019 .0003 .6696 .0104 .0004 .0006 .0004 .0000



Table 5: Information on gene sets in the analysis

Gene set name Description Genes in prostate cancer data

GCM FANCL Neighborhood of FANCL ZMYM2, ZFP14,

(Fanconi anemia, CRNKL1, C12orf30,

complementation group L) ZNF655, ANKRD17,

in the GCM expression DMTF1,

compendium NCOA5, USP37, REPIN1

GCM CASP2 Neighborhood of CASP2 METT11D1, DHX37,

(caspase 2, apoptosis-related USP39, CCAR1,

cysteine peptidase,

neural precursor cell expressed, MLL, C17orf42,

developmentally down-regulated 2) CS,

in the GCM expression compendium SPPL2B, THRAP3

GNF2 ICAM3 Neighborhood of ICAM3 ITGB2, DAZAP2, TMEM127,

(intercellular adhesion molecule 3) GIT2, ZCCHC6,TXNIP,

in the GNF2 expression PTPRC, WAS, HLA-F,

compendium ARRB2, SH3BGRL3, RIN3



Table 6: Data analysis results of p-values for the gene study. T1: proposed permutation

test for equality of mean vectors; T2: proposed permutation test for equality of covariance

matrices; CT: proposed permutation test for simultaneous equality of both mean vectors

and covariance matrices; LRT: finite-sample likelihood ratio test; χ2: asymptotic Chi-squared

test of the likelihood ratio statistic.

H0 : µX = µY H0 : ΩX = ΩY H0 : µX = µY

and ΩX = ΩY

p-value T1 LRT χ2 T2 LRT χ2 CT LRT χ2

GCM FANCL .0000 .0000 .0000 .0178 .0000 .0000 .0000 .0000 .0000

GCM CASP2 .0000 .0000 .0000 .0219 .0000 .0000 .0000 .0000 .0000

GNF2 ICAM3 .0000 .0000 .0000 .1328 .0362 .0000 .0000 .0001 .0000



Normal

(a) normal
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Figure 1: Estimated dependent structures of the 10 genes in gene set GCM FANCL. The

genes reported in Table 5 are ordered counter-clockwise as the nodes with the far right

node being the first gene in the table. A line between two nodes means the two genes are

conditionally dependent given all other genes.


