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Abstract

Testing for the difference in the strength of bivariate association in two independent
contingency tables is an important issue that finds applications in various disciplines.
Currently, many of the commonly used tests are based on single index measures of as-
sociation. More specifically, one obtains single index measurements of association from
two tables and compares them based on asymptotic theory. Although they are usually
easy to understand and use, often much of the information contained in the data is
lost with single index measures. Accordingly, they fail to fully capture the association
in the data. To remedy this shortcoming, we introduce a new summary statistic mea-
suring various types of association in a contingency table. Based on this new summary
statistic, we propose a likelihood ratio test comparing the strength of association in two
independent contingency tables. The proposed test exams the stochastic order between
summary statistics. We derive its asymptotic null distribution and demonstrate that
the least favorable distributions are chi-bar distributions. We numerically compare the
power of the proposed test to that of the tests based on single index measures. Finally,
we provide two examples illustrating the new summary statistics and the related tests.

Key words: Association, contingency table, likelihood ratio test, ordered categorical
variable, stochastic order, tail probabilities.

1 Introduction

Testing for the difference in the strength of association between two ordered categorical

variables in two contingency tables is an important issue that finds applications in reliability

theory, sociology, education, and many other fields. Just to list a few examples, Hand

et al. (1994) assess the degree of association in socioeconomic status of fathers and sons. In

education research, Loughin and Scherer (1998) examine the association between farmers’
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education levels and their sources of veterinary information. In economics, Umesh (1995)

examines the association between country origin and user gender in care selection. In all

these examples, the researchers’ primary interest lies in assessing the positive association

between two (ordered) categorical variables and requires determining the level of statistical

significance.

Many existing methods for testing the association between categorical variables rely

on single index measures. The existing work on association measures dates back to Karl

Pearson’s χ2−test in early 1900s. Stuart (1953) also considers a measure of association

based on concordant and disconcordant pairs and applies it to testing for the difference in

the bivariate association in two contingency tables. Cohen (1960) introduces a single index

measure, named the κ or kappa measure, of association that makes use of the number of

perfectly matched pairs. Modifying the κ measure, Fleiss and Cohen (1973) proposed to

use a weighted κ measure, where the weights are subjectively determined. Additionally, the

notion of κ is generalized to the cases with two or more ratings or with varying sets of ratings

(Fleiss, 1971; Light, 1971; Landis and Koch, 1977a,b; Fleiss and Cuzick, 1979; Lau, 1993).

Using a logistic regression model, Barlow (1996) further suggested a technique for adjusting

κ for covariate effects. These single index association measures offer convenient tools for

assessing the association between two categorical variables.

A popular alternative to index based methods are the approaches based on log-linear

models as pointed out by Tomizawa and Hatanaka (2001),Tomizawa and Tokunaga (2006)

and Liu and Agresti (2005). One most general model in previous literature is given by

Goodman (1985):

log µij = λ + λX
i + λY

j +
M∑

k=1

βkuikujk, (1)

where M ≤ min(r−1, c−1). The scores of uik and ujk define different models. Unfortunately,

however, uik and ujk are defined subjectively and the results vary accordingly.

Despite their convenience, single index measures often lose much of the information con-

tained in the data, failing to fully reflect the association between two categorical variables
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in a table. For example, let us consider Cohen’s kappa measure defined as

κ(k) =

∑
i π

(k)
ii −∑

i π
(k)
i+ π

(k)
+i

1−∑
i π

(k)
i+ π

(k)
+i

.

The kappa measure only counts the concordant and dis-concordant pairs while ignoring the

magnitude of disagreement. To be more specific, given Table
{
πij, i, j = 1, 2, . . . , m

}
, the

kappa measure uses the summary statistic on
∑

i πii to obtain an index score. By doing so,

the kappa measure clearly disregards much of the information contained in the raw data. To

illustrate this point, for example, the kappa measure cannot tell the difference between

αI5 + (1− α)
1

2




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0




and αI5 + (1− α)
1

8




0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0




,

where I5 is a 5×5 identity matrix. On the other hand, the latter clearly shows a higher level

of association than the former.

In the current paper, we introduce a new multivariate summary measure of association

between two ordered categorical variables. Our method allows us to define local association

measures as well as a single index global association measure. More specifically, consider a

m−square contingency table Ck, k = 1, 2, where cell probabilities are {π(k)
i,j , i = 1, . . . , m, j =

1, . . . , m, k = 1, 2}. We summarize the cell probabilities based on d = i − j so that the

resulting marginal probabilities would be

qk =
(
q0k, q−1,k, q−2,k, . . . , q−(m−1),k, q1k, . . . , q(m−2)k, q(m−1)k

)
,

where

qdk =
∑

{(i,j):i−j=d}
π

(k)
ij .

We let q−1 =
∑−(m−1)

k=0 q1k, q+1 =
∑(m−1)

k=0 q1k, q−2 =
∑−(m−1)

k=0 q2k, and q+2 =
∑(m−1)

k=0 q2k.

Although we only consider square contingency tables, our results can easily be extended to

any two-way contingency tables by redefining ds. We analyze non-square contingency tables

in our examples presented in Section 4.
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The multivariate summary statistic allows us to examine several types of association

between C1 and C2, which we refer them as ”high-low” association (SO-HL)”, ”low-high”

association (SO-LH), and ”global” association (GO). In this paper, we study the likelihood

ratio test (LRT) for testing stochastic orders in qks to test the degree of aforementioned

associations between C1 and C2. We show that the asymptotic null distribution of LRTs is

a chi-bar squared distribution and find the least favorable distribution for the SO-HL, the

SO-LH, and the GO.

The remainder of this paper is organized as follows. In Section 2, we introduce three types

of association based on the aforementioned multivariate summary statistics. In Section 3, we

develop LRTs for testing stochastic orderings in qlks. In Section 4, we numerically compare

the power of the proposed stochastic order test to that of Stuart’s test and Cohen’s κ based

test, by assessing the global stochastic order between C1 and C2. In Section 5, we provide

two examples. In the first example, we test for the magnitude of gender and ethnicity-based

inequality in returns to education. In the second example, we reanalyze the eye-sight power

data used in Stuart (1953).

2 Types of associations

The multivariate summary statistic introduced earlier allows us to examine several types of

association between C1 and C2.

• the ”high-low” association (SO-HL):

C2 has a higher level of ”high-low” association than C1 (C2 ºS−HL C1), if

q01

/
q−1 ≤ q02

/
q−2(

1
/
q−1

)(
q01 +

∑l
i=−1 qi1

) ≤ (
1
/
q−2

)(
q02 +

∑l
i=−1 qi2

)
, for l = −1,−2, . . . ,−(m− 1).

(2)

• the ”low-high” association (SO-LH):
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C2 has a higher level of low-high association than C1 (C2 ºS−LH C1), if

q01

/
q+1 ≤ q02

/
q+2(

1
/
q+1

)(
q01 +

∑l
i=1 qi1

) ≤ (
1
/
q+2

)(
q02 +

∑l
i=1 qi2

)
, for l = 1, 2, . . . , (m− 1).

(3)

• the ”global” association (SO):

C2 has a higher level of global association than C1 (C2 ºS C1), if

q01 ≤ q02

q01 +
∑l

i=−1 qi1 ≤ q02 +
∑l

i=−1 qi2, for l = −1,−2, . . . ,−(m− 2),

q01 +
∑l

i=1 qi1 ≤ q02 +
∑l

i=1 qi2, for l = 1, 2, . . . , (m− 2).

(4)

All three types of association presume that there would be clusters of data points around

the diagonal if two categorical variables are highly associated with each other.

Global association (SO) is closely connected to the order based on the kappa measure

and the D-symmetry in Goodman (1979). Suppose C1 ºK C2 denotes C1 has a higher κ

index than C2. Simple algebra yields the following relationships:

(1)
{
C1 ºS C2

} ⊂ {
C1 ºK C2

}
.

(2)
{
C1 ÂS C2

}⋂ {
C1 =K C2

} 6= ∅.

(3)
{
C1 =S C2

} ⊂ {
C1 =K C2

}
.

(4)
{
C1 ºS C2

}C
⋂ {

C1 ÂK C2

} 6= ∅.

(5)
{
C1 ºS C2

}C
⋂ {

C1 =K C2

} 6= ∅.

3 LRTs

In this section, we study the LRT for testing three types of associations (i.e., the SO-HL, the

SO-LH, and the GO) introduced in the previous section. First, for SO-HL and SO-LH, we use

the results obtained from testing the simple stochastic order in multinomial probabilities.

By doing so, we show that the asymptotic null distribution of LRTs is a chi-bar squared

distribution and its common least favorable distribution is

1

2
χ2

m−2 +
1

2
χ2

m−1, (5)
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where χ2
m−2 and χ2

m−1 are independent chi-square distributions with m−2 and m−1 degrees

of freedom respectively. Second, for SO, we derive the asymptotic null distribution of the

LRT, which is a chi-bar squared distribution. We further demonstrate that any distribution

with p0k = 1/2 and pik = 0, for i = ±1,±2, . . . ,±(m− 2), k = 1, 2, is least favorable. Thus,

sup
H0

P
(
LRT ≥ t

∣∣H0

)
=

1

2
P

(
χ2

2m−3 ≥ t
)

+
1

2
P

(
χ2

2m−4 ≥ t
)
. (6)

3.1 Testing the orders in HL or LH association

Since SO-HL and SO-LH are parallel to each other, we only discuss the likelihood ratio test

(LRT) for SO-LH. All our discussion can be extended to the SO-HL case. Consider two

contingency tables C1 and C2 introduced earlier. We test the hypothesis C2 ºS−LH C1.

That is, we test if

q01

/
q+1 ≤ q02

/
q+2(

1
/
q+1

)(
q01 +

∑l
i=1 qi1

) ≤ (
1
/
q+2

)(
q02 +

∑l
i=1 qi2

)
for l = 1, 2, . . . , (m− 1).

(7)

Let us consider a new set of parameters, for k = 1 and 2,

pk =
(
p0k, p1k, . . . , p(m−2)k, p(m−1)k

)
,

where pdk = qdk

/
qk+ for d = 0, 1, 2, . . . , m− 1 and k = 1, 2. Also let

fk =
(
f0k, f1k, . . . , f(m−2)k, f(m−1)k

)

be the observations corresponding to pk. Then, fk has a multinomial distribution with

probability pk, and testing (7) is equivalent to testing for the simple stochastic ordering

between p1 and p2. Therefore, using the results from Chapter 6 in Silvapulle and Sen

(2005), asymptotically the LRT has a chi-bar squared distribution, and its least favorable

distribution is the chi-bar squared distribution in (5).

3.2 Testing the order in global association

As with SO-HL and SO-LH, we introduce a new set of parameters

pk =
(
p0k, p1k, p2k, . . . , p(2m−4)k, p(2m−3)k

)
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where
p0k = q0k,
pik = q−i,k for i = 1, 2, . . . , m− 2,
p(m−2+i)k = qik for i = 1, 2, . . . , m− 2,
p(2m−3)k = q−(m−1),k + q(m−2)k

.

Using this notation, the stochastic order ÂS in two contingency tables C1 =
{
π

(1)
ij

}
and

C2 =
{
π

(2)
ij

}
is defined as

p01 ≤ p02

p01 +
l∑

i=1

pi1 ≤ p02 +
l∑

i=1

pi2, for l = 1, 2, · · · ,m− 2, (8)

p01 +
l∑

i=1

p(m−2+i)1 ≤ p02 +
l∑

i=1

p(m−2+i)2, for l = 1, · · · ,m− 2. (9)

In other words, the order shows the simple partial stochastic ordering between {pi1, i =

1, 2, . . . , (2m− 3)} and {pi2, i = 1, 2, . . . , (2m− 3)}. We denote this as C2 ÂS C1.

We now develop a LRT to test H1 : C1 ÂS C2 against H0 : C1 =S C2. Let

{fi1, i = 0, . . . , (2m − 3)} (resp. {fi2, i = 0, . . . , (2m − 3)}) be the observed frequencies

of multinomial distributions with size n and probabilities {pi1, i = 0, . . . , (2m − 3)} (resp.

{pi2, i = 0, . . . , (2m− 3)}) as defined earlier. The log-likelihood function is

l
(
p1,p2

)
=

2∑

k=1

{
2m−4∑
i=0

fik log pik +

(
n−

2m−4∑
i=0

fik

)
log

(
1−

2m−4∑
i=0

pik

)}
, (10)

where p1 =
(
p01, . . . , p(2m−4)1

)T
and p2 =

(
p02, . . . , p(2m−4)2

)T
.

Suppose we let the set of parameters associated with the hypothesis H1 (resp. H0) as S1

(resp. S0).

S1 =
{
p :

[
B,−B

]
p ≥ 0(2m−3)×1

}

S0 =
{
p :

[
B,−B

]
p = 0(2m−3)×1

}
,

where p =
(
pT

1 ,pT
2

)
, and

B =




1 01×(m−2) 01×(m−2)

1(m−2)×1 Lm−2 0(m−2)×(m−2)

1(m−2)×1 0(m−2)×(m−2) Lm−2


 .
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Here, bl×k is a l× k matrix whose elements are all bs, and Lk is a k× k lower triangle matrix

whose (i, j)th element lij = 1 if i ≥ j and 0 otherwise. We further let A =
[
B,−B

]
for

notational simplicity.

The log−LRT is

T = 2

{
sup
p∈H0

l
(
p
)− sup

p∈H1

l
(
p
)}

= 2
{

l
(
p̃
)− l

(
p̂
)}

, (11)

where p̃ is the maximum likelihood estimate (MLE) of p under H0 and p̂ is that under H1.

Now we examine the asymptotic null distribution of the log−LRT. From Proposition

4.3.1 in Silvapulle and Sen (2005) (also see Feng and Wang (2007) for details), it can be

shown that, when testing H1 against H0, the log-LRT (11) converges in distribution to

T0 = min
β∈T0

(
Z− β

)T
Q

(
Z− β

)−min
β∈T1

(
Z− β

)T
Q

(
Z− β

)
, (12)

where

T1 =
{

β ∈ R2(2m−3) :
[
B,−B

]
β ≥ 0(2m−3)×1

}

T0 =
{

β ∈ R2(2m−3) :
[
B,−B

]
β = 0(2m−3)×1

}
,

and Z ∼ N
(
02(2m−3)×1, Q

−1
)

with

Q =

( (
1
/
2
)
M 0(2m−3)×(2m−3)

0(2m−3)×(2m−3)

(
1
/
2
)
M

)

and

M = diag
(
1/p0, 1/p1, . . . , 1/p2m−4

)
+

(
1
/
p(2m−3)

)
1(2m−3)×(2m−3).

Thus, the asymptotic null distribution is the chi-bar square distribution

lim
n→∞

P
(
LRT ≥ t

∣∣H0

)
=

2m−3∑
i=0

wi

(
2m− 3, AQ−1AT ,R+

(2m−3)

)
P

(
χ2

i ≥ t
)
, (13)

whereR+
(2m−3) is the positive quadrant ofR(2m−3) and wi

(
p,W, C)s are non-negative numbers

whose sum equals 1. We refer readers to Chapter 3 in Silvapulle and Sen (2005) for more

details on wi

(
p,W, C).
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From Theorem 1, it can be shown that the least favorable null hypothesis is p1 = p2 =
(
1
/
2, 01×(2m−4)

)T
, and the least favorable asymptotic null distribution is a simple two com-

ponent chi-bar square distribution. The proof is included in Appendix.

Theorem 1. In testing H1 against H0, the least favorable null value for the asymptotic

distribution of LRT is p1 = p2 =
(
1
/
2, 01×(2m−4)

)T
, and

sup
H0

lim
n→∞

P
(
LRT ≥ t

∣∣H0

)
=

1

2

{
P

(
χ2

2m−4 ≥ t
)

+ P
(
χ2

2m−3 ≥ t
)}

. (14)

4 The power study

We numerically compare the power of the proposed LRT with that of the kappa-based test

when testing the order in global association (SO) between two contingency tables. We use

the Plackett copula to generate a contingency table. In the Plackett copula, a bivariate

random variable (U, V ) has the joint distribution function

fθ(u, v) =

{
1 + (θ − 1)(u + v)

}− {(
1 + (θ − 1)(u + v)

)2 − 4uvθ(θ − 1)
}1/2

2(θ − 1)
(15)

whose marginal distributions are uniform distributions on
(
0, 1

)
. The Plackett copula is

specified by a parameter θ > 0 called the odd-ratio. The parameter θ controls the sum

of diagonal probabilities in the contingency table. When θ = 1, the copula corresponds to

the bivariate random variable (U, V ) consisting of two independent components with uniform

marginal distributions on (0, 1). In the current study, we generate 10×10 contingency tables

with a fixed sum of diagonal probabilities p and size n. To do so, we first numerically find

the Plackett parameter θ which determines the given sum of diagonal probability p. Subse-

quently, we generate n copies of bivariate random variables (U, V ) from (15) and distribute

them uniformly. Interested readers should refer to Joe (1997) and Nelson (1999) for more

details on the Plackett copula.

The power study is conducted at two levels. First, in Section 4.1, we compare the power

of the proposed test (SO) to that of a kappa-based test (CO) for the case in which C1 ÂS C2
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but C1 ÂK C2. The second simulation study illustrates the difference between SO and CO.

We generate a pair of tables C1 and C2 where C1 ÂS C2 but C1 =K C2.

4.1 The first simulation study

For k = 1, 2, let pk be the probability that two discrete random variables Xk and Yk in a

contingency table Ck are equal to each other. Also, let ∆ = p2 − p1. Suppose p1 = 0.1, 0.3,

and 0, 7 and ∆ = 0, 0.05, 0.1, and 0.2. We generate 1000 data sets with n = 30, 100, 300,

and 500 for each (p1, p2). We apply the three methods to compare the strength of bivariate

association in C1 and C2: (1) Stuart’s test (ST), (2) Cohen’s method (CO), and (3) the

stochastic order test (SO) (see Table 1). In applying SO, we compute the power using the

results in Theorem 1.

As can be seen from Table 1, our method is nearly always more powerful than ST.

Indeed, ST performs poorer than both of its competitors in all cases considered in our

analysis although its performance improves somewhat as the bivariate association in two

tables becomes weaker.

Simulation results show that, when compared with CO, our method is generally superior

when the bivariate association in two tables is weak. For example, our method is nearly

always more powerful than CO when p1 = 0.1. However, a closer examination of our results

reveals that, as the strength of bivariate association in two tables increases, the power of

our method becomes relatively weaker when compared with that of CO. As noted earlier,

CO only considers the information on concordant and discordant pairs. In other words,

it only compares the diagonal probabilities in two tables when testing for the difference

in the strength of bivariate association in two contingency tables. On the other hand,

the amount of information contained in diagonal probabilities increases as the strength of

bivariate association in two tables increases. As a result, CO’s statistical power also increases

as p1 increases. In contrast, our method considers the information contained in both diagonal

and off-diagonal probabilities. Accordingly, our test is inevitably more conservative than

10



CO. In order to reject the null hypothesis, there ought to be a significant difference between

two tables not only in terms of their diagonal probabilities but also in terms of off-diagonal

probabilities. Therefore, our test becomes especially conservative as the bivariate association

in two tables becomes weaker since the amount of information contained in off-diagonal

probabilities decreases.

p1 = 0.1
∆ = 0 ∆ = 0.05 ∆ = 0.1

n ST SO CO ST SO CO ST SO CO.
50 0.000 0.072 0.061 0.054 0.233 0.191 0.270 0.476 0.448
100 0.001 0.065 0.029 0.176 0.356 0.289 0.717 0.788 0.636
300 0.000 0.037 0.043 0.842 0.791 0.573 1.000 1.000 0.976
500 0.000 0.019 0.038 0.987 0.965 0.761 1.000 1.000 0.995

p1 = 0.2
∆ = 0 ∆ = 0.05 ∆ = 0.1

n ST SO CO ST SO CO ST SO CO
50 0.000 0.039 0.057 0.002 0.057 0.131 0.011 0.126 0.322
100 0.000 0.046 0.049 0.008 0.154 0.214 0.059 0.386 0.513
300 0.000 0.073 0.043 0.057 0.444 0.428 0.582 0.934 0.877
500 0.000 0.062 0.045 0.178 0.638 0.571 0.928 0.998 0.977

p1 = 0.3
∆ = 0 ∆ = 0.05 ∆ = 0.1

n ST SO CO ST SO CO ST SO CO
50 0.000 0.031 0.062 0.000 0.076 0.140 0.000 0.147 0.308
100 0.000 0.046 0.064 0.000 0.103 0.181 0.005 0.299 0.436
300 0.000 0.060 0.062 0.001 0.251 0.365 0.083 0.712 0.812
500 0.000 0.062 0.049 0.018 0.350 0.534 0.344 0.917 0.946

p1 = 0.7
∆ = 0 ∆ = 0.05 ∆ = 0.1

n ST SO CO ST SO CO ST SO CO
50 0.000 0.015 0.045 0.000 0.032 0.138 0.000 0.094 0.331
100 0.000 0.011 0.061 0.000 0.061 0.189 0.000 0.201 0.498
300 0.000 0.023 0.042 0.000 0.151 0.371 0.000 0.611 0.887
500 0.000 0.024 0.053 0.000 0.225 0.542 0.000 0.829 0.980

Table 1: First simulation: ”ST” implies Stuart’s method, ”SO” implies the proposed stochas-
tic order test, and ”CO” implies the method based on Cohen’s κ measure.
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4.2 The second simulation study

The second simulation study illustrates the difference between SO and CO. More precisely,

it compares the order based on the proposed multivariate summary measure and that based

on Cohen’s kappa statistic.

In doing so, let us first explain how we generate tables C1 and C2. Let A1 be the tables

generated from the Plackett copular where the sum of diagonal probabilities is p. Also let

A2 be an independent table and A3(η) be a table in which either
(
i, i + η

)
or

(
i + η, i

)
is 1

for every possible i. For the given η, we generate tables C1 and C2 as follows:

C1 = 0.3A1 + 0.7A2

C2 = 0.3A1 + 0.6A2 + 0.1A3.

We generate 1000 pairs of 10 × 10 tables
(
C1,C2

)
with size n = 50, 100, 300, and 500. We

again apply the three tests we examined earlier: (1) Stuart’s test (ST), (2) the proposed

stochastic order test (SO), and (3) the test based on Cohen’s κ measure (CO). The results

are reported in Table 2.

Table 2 shows that CO has an inadequate level of power when testing for the difference

between C1 and C2, because their κ measures are equal to one another. In contrast, SO is

significantly more powerful than CO in nearly all the cases considered. The power of ST is

similar to that in the first simulation.

5 Examples

This section illustrates the proposed stochastic order test through two examples. The first

example illustrates SO-LH and SO-HL in terms of gender- and race-based inequality in

returns to education. The second example tests the order in global association (SO) in left

and right eyesight power among men and women. The eyesight power data came from Stuart

(1953).
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n n
η Method 50 100 300 500 50 100 300 500

p = 0.1 p = 0.275
0 ST 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

SO 0.057 0.055 0.019 0.024 0.065 0.038 0.030 0.029
CO 0.055 0.055 0.058 0.051 0.052 0.049 0.051 0.047

1 ST 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.005
SO 0.124 0.206 0.575 0.867 0.107 0.198 0.545 0.833
CO 0.069 0.055 0.056 0.052 0.047 0.056 0.044 0.051

2 ST 0.000 0.001 0.005 0.004 0.002 0.003 0.005 0.008
SO 0.155 0.217 0.636 0.910 0.132 0.225 0.635 0.889
CO 0.058 0.048 0.044 0.051 0.059 0.062 0.061 0.042

8 ST 0.032 0.101 0.564 0.907 0.053 0.183 0.730 0.942
SO 0.310 0.524 0.976 1.000 0.296 0.591 0.980 1.000
CO 0.056 0.057 0.060 0.077 0.054 0.055 0.080 0.076

p = 0.45 p = 0.8
0 ST 0.000 0.001 0.001 0.000 0.000 0.000 0.003 0.001

SO 0.051 0.059 0.047 0.033 0.051 0.061 0.036 0.052
CO 0.064 0.048 0.054 0.049 0.050 0.054 0.052 0.047

1 ST 0.001 0.001 0.000 0.006 0.000 0.001 0.005 0.010
SO 0.131 0.206 0.561 0.857 0.147 0.309 0.718 0.928
CO 0.066 0.044 0.052 0.041 0.045 0.052 0.046 0.061

2 ST 0.004 0.004 0.010 0.017 0.003 0.008 0.014 0.024
SO 0.110 0.252 0.669 0.913 0.174 0.319 0.737 0.956
CO 0.050 0.058 0.054 0.046 0.062 0.048 0.061 0.046

8 ST 0.069 0.182 0.771 0.961 0.084 0.211 0.787 0.970
SO 0.292 0.572 0.992 1.000 0.359 0.630 0.994 1.000
CO 0.069 0.048 0.060 0.082 0.058 0.066 0.058 0.059

Table 2: The power of three tests in the second simulation study. ”ST”, ”CO”, and ”SO”
denote Stuart’s method, the method based on Cohen’s measure, and the proposed stochastic
order test respectively.

5.1 Returns to eduction data

In this section, we examine the inequality in returns to education. Schooling is conceived

as a process by which atomized individuals acquire knowledge or credentials. Traditional

theories of stratification assume that education contributes to inequality by endowing people

with different amounts of human capital (knowledge and skills) or credentials (e.g., Becker

(1975); Mincer (1974); Blau and Duncan (1967)). Alternatively, signaling theorists maintain
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that education is instrumental in determining one’s life chances because it functions as a

criteria by which employers use to screen job applicants (Arrow, 1973; Spence, 1974; Blaug,

1985).

The literature on cost-benefit analysis of education however suggests that the monetary

returns to education vary greatly across the more and the less privileged strata of the pop-

ulation. For example, many scholars have argued that returns to female education are low,

because of the lower earnings, lower labor force participation, and shorter working hours

of women, compared with men (Moreh, 1971; Morris and Ziderman, 1971; Psacharopou-

los, 1973). Similarly, others have argued that returns to education for members of ethnic

minority are low (Freeman, 1976).

This raises an important policy concern. If the rate of return to education varies greatly,

it would support the view that the higher education of their children is a waste of money

depending upon the profiles of their background. Higher education is an investment for a

certain subgroup of the population, whereas it is largely consumption for the others. This

suggests that education cannot be a vehicle for accomplishing economic equality between

the more and the less privileged strata of the population.

Our data come from the 2004 American National Election Studies (ANES) Survey. The

survey was conducted as part of the ANES time series (which dates back to 1948) and asked

about Americans’ basic political beliefs, attitudes, and behaviors. The 2004 ANES sample

consisted of a new cross-section of respondents that yielded 1,212 face-to-face interviews in

the pre-election study prior to the 2004 presidential election. Pre-election interviews were

conducted September 7 through November 1, 2004.

As described earlier, there are two scenarios under which the association between educa-

tion and income can be weakened. The presence of highly educated individuals whose income

levels are low (the high-low’s) weakens the association between education and income. Alter-

natively, the presence of poorly educated individuals with high income (the low-high’s) also

weakens the association between education and income. In this section, we test the group
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difference between men and women and between whites and members of ethnic minorities

in both the ”high-low” and the ”low-high” dimensions. These results are presented in Table

5.1.

Our results show that the gender difference was significant when considering the ”high-

low” cases (or the probability of the poorly educated attaining high levels of income). The

null hypothesis was clearly rejected (p = 0.0188). On other hand, men and women were not

vastly different in terms of the ”low-high” dimension (or being highly educated and attaining

low levels of income) (p = 0.1811). In other words, there was a discrepancy between men and

women in terms of returns to education; however, this discrepancy was asymmetric. Both

men and women had to be well educated to attain high levels of income; but, compared

with women, the poorly educated men still had a descent chance of attaining high levels of

income.

A similar pattern emerged when examining the group difference across racial lines. The

probability of the highly educated attaining high levels of income were not vastly different

for whites and others (p = 0.3961). On the other hand, whites had a significantly higher

chance of attaining high levels of income when poorly educated compared with members of

ethnic minorities (p = 0.0370).

5.2 Eye-sight power Data

As our second example, we apply our method to the eye-testing data previously examined in

Stuart (1953). The data consist of eye test records of 3242 male and 7477 female employees

in Royal Ordnance factories in 1943-6. From the data set, Stuart (1953) tests the strength

of association in the power of left and right eyes. The data set is also analyzed in Bartolucci

and Scaccia (2004). Our null and alternative hypotheses are as follows:

H0 : The strength of association between left and right eyesight powers
is equal for men and women.

H1 : The strength of association between left and right eyesight powers
is unequal for men and women.
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H1 LRT p-value

male ºSO−LH female 6.9557 0.1811

female ºSO−HL male 12.8021 0.0188

white ºSO−LH minority 4.6219 0.3961

minority ºSO−HL white 11.1200 0.0370

Table 3: If ”male ºSO−LH female”, the poorly educated men often obtain higher levels of
income when compared with the poorly educated women. If ”female ºSO−HL male”, the
highly educated women often obtain lower levels of income when compared with the highly
educated men. Orders between white and minority are defined similarly.

When applying the three methods we examined earlier (e.g. ST, SO, and CO), p-values

are 0.4609, < 0.0001, and 0.0564 respectively. Thus, we cannot not reject the null hypothesis

H0 based on ST and CO, where SO allows us to reject the null hypothesis. These results are

consistent with those concerning the global log odds ratio in Bartolucci and Scaccia (2004).

This is sensible since our method is comparable with the authors’ test on global odds ratio

(not one on reverse continuation).

6 Conclusion

In this paper, we introduced a new multivariate summary statistic of association between

two ordered categorical variables in a contingency table. This summary statistic allows the

stochastic ordering of two tables in accordance with the strength of association. We showed

that the the proposed order is closely related to the order based on Cohen’s κ measure.

We developed a likelihood ratio test examining the proposed stochastic order. We derived

its asymptotic null distribution and the least favorable distribution to attain the largest

p−values in the composite null space. The power study shows the proposed test has several
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Figure 1: Conditional cumulative probabilities for SO-LH (left wing) and SO-HL (right wing)
defined in (2) and (3)

advantages when comparing the strength of association in two contingency tables. Finally,

we provided two examples illustrating our method.
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Appendix: Proof of Theorem 1

For Z and β defined in Section 2.1, we consider a linear transformation
(

Y
Y⊥

)
=

(
A
A⊥

)
Z =

(
B −B
A⊥

1 A⊥
2

) (
Z1

Z2

)
. (16)

where A =
(
B,−B) is the matrix to represent the null hypothesis, and A⊥ =

(
A⊥

1 , A⊥
2

)
is a

(2m−3)×2(2m−3) matrix whose column vectors are orthogonal to those in A. The random

vectors Z1 and Z2 are the first and the second (2m−1) elements of Z, which are independent

to each other and are identically distributed from N
(
0(2m−3)×1, 2M

−1
)
. Consider the linear

transformation
(

Θ
Θ⊥

)
=

(
B −B
A⊥

1 A⊥
2

) (
β1

β2

)
, (17)

where again β1 (resp. β2) is the first (2m−3) elements (resp. the second (2m−3) elements)

of β. Then, with transformed variables and parameters, the LRT is

LRT = YTV −1Y −min
Θ≥0

(
Y −Θ

)T
V −1

(
Y −Θ

)
,

where V = BM−1BT and Y ∼ N
(
0, V

)
.

Now we look for the Cholesky decomposition of V to get the dual of chi-bar square

distribution, which allows us to find a least favorable null hypothesis. Suppose LM−1 is the

lower triangular matrix in the Cholesky decomposition of M , say M = LM−1LT
M−1 . Then,

since the matrix B is lower triangular, thus, the Cholesky factor of the covariance matrix V

is

LV = BLM−1 . (18)

Here, M−1 is the variance covariance matrix of a multinomial distribution with proba-

bility
(
p0, . . . , p2m−4

)
, and it is defined as

M−1 = diag
(
p0, . . . , p2m−4

)− (
p0, . . . , p(2m−4)

)T (
p0, . . . , p(2m−4)

)
,

where pi = pi1 = pi2, for i = 0, . . . , 2m− 4. Its Cholesky factor is given in Tanabe and Sagae

(1992) as

LM−1 = L · diag
(
d

1/2
0 , . . . , d

1/2
2m−4

)
, (19)
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where, if we let

qi = 1−
(
p0 + p1 + · · ·+ pi

)
, i = 0, 1, 2, . . . , 2m− 4,

and q−1 = 1, then L is a (2m− 3)× (2m− 3) lower triangular matrix whose (i, j)th element

is

lij =





pi−1/qj−1 i > j
1 i = j
0 i < j

(20)

and di =
(
piqi

)/
qi−1 for i = 0, . . . , 2m− 4. Thus,

LV = BLM−1

=




√
d0 0 0 0 0 0√
d0

{
1 + p1

q0

} √
d1 0 0 0 0

√
d0

{
1 + p1+p2

q0

} √
d1

{
1 + p2

q1

} √
d2 0 0 0

...
...

...
. . . 0 0

...
...

...
...

. . . 0√
d0

{
1 + z1

q0

} √
d1

{
1 + z2

q1

}
· · · · · · · · · √

d(2m−4)




,

where zj =
∑2m−4

i=j pi for j = 1, 2, . . . , 2m − 4. Since the column vectors of LV are all

non-negative with non-zero first elements,

R+
2m−3 ⊆ C(LV

) ⊆ C(eT
)
,

where C(R)
=

{
Θ : RT β ≥ 0

}
and e =

(
1, 01×(2m−4)

)T
.

We finally claim that C(LV

)
is not a proper subset of C(eT

)
by choosing a sequence in

H0 whose C(LV

)
converges to C(eT

)
. If we let p1(ε) = 2−1

(
1− (2m− 4)ε, ε · 11×(2m−4)

)
, then

p1(ε) converges to 2−1
(
1, 0, . . . , 0

)
. Hence, LV converges to

1

2

(
1(2m−3)×1, 0(2m−3)×(2m−4)

)
,

and, therefore, C(LV

)
converges to C(eT

)
.
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