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We study kernel density estimator from the ranked set samples (RSS). In the kernel density
estimator, the selection of the bandwidth gives strong influence on the resulting estimate.
In this article, we consider several different choices of the bandwidth and compare
their asymptotic mean integrated square errors (MISE). We also propose a plug-in
estimator of the bandwidth to minimize the asymptotic MISE. We numerically compare
the MISE of the proposed kernel estimator (having the plug-in bandwidth estimator)
to its simple random sampling counterpart. We further propose two estimators for a
symmetric distribution, and show that they outperform in MISE all other estimators not
considering symmetry. We finally apply the methods in this article to analyzing the tree
height data from Platt et al. (1988) and Chen et al. (2003).

Keywords Kernel density estimator; Optimal bandwidth; Ranked set sampling.

Mathematics Subject Clssification 62G30; 62G07.

1. Introduction

Ranked set sampling (RSS) is a data collection scheme that usually yields more efficient
estimators than simple random sampling. It was originally proposed by McIntyre (1952)
for situations where actual measurements of sampling units are difficult or expensive to
obtain, but ranking a set of subjects is relatively easy or less costly. Ever since then, RSS
has been successfully applied to many fields such as agriculture, forestry, biology, ecology,
environmental sciences, and medical studies. We refer readers to Chen et al. (2003) and the
references therein for more details of the RSS.

Received August 29, 2012; Accepted March 27, 2013.
Address Correspondences to Johan Lim, Department of Statistics, Seoul National University,

Seoul, Korea. E-mail: johanlim@snu.ac.kr
Color versions of one or more of the figures in the article can be found online at

www.tandfonline.com/lsta.

2156

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ar
yl

an
d 

B
al

tim
or

e 
C

ou
nt

y]
 a

t 0
6:

27
 2

5 
A

pr
il 

20
14

 



Kernel Density Estimator From Ranked Set Samples 2157

The density function or the cumulative distribution function is the first step to under-
stand the stochastic nature of the underlying population. For the RSS, several estimators
have been proposed to estimate the cumulative distribution function (cdf) in the literature.
Stokes and Sager (1988) estimated the cdf by averaging the empirical cdf of each rank
stratum. Kvam and Samaniego (1994) studied the nonparametric maximum likelihood es-
timator (MLE). Oztúrk (2007) proposed an isotonized estimator and numerically showed
that it is robust to ranking error. He further extended the method of Kvam and Samaniego
(1994) to the NPMLE with ranking errors (Oztúrk 2009). However, unlike the cdf problem,
less effort was made to estimate the density function, although it might be as important as
the cumulative distribution to understand the population.

Suppose we observe the RSS data:

X(1)1, . . . , X(1)n1 , X(2)1, . . . , X(2)n2 , . . . , X(H )1, . . . , X(H )nH
,

where X(h)j is the h−th smallest observation in a set of H independent samples in cycle
j. We assume the samples are from the distribution with density function f (x), which has
a Hölder continuous and square-integrable fourth derivative. Chen (1999) studied a kernel
density estimator for the balanced RSS:

f̂ RSS(x; h) = 1

H

H∑
r=1

1

mh

m∑
j=1

K

(
x − X(r)j

h

)
.

He showed that, when the optimal bandwidth for the simple random sample (SRS), denoted
by hSRS, is used, it has smaller mean integrated square error (MISE) than the kernel density
estimator based on the SRS. The MISE of f̂ (x; h) is

MISE(f̂ (h)) ≡
∫

(f̂ (x; h) − f (x))2dx,

and Chen (1999) showed analytically that

MISE(f̂ RSS(hSRS)) ≤ MISE(f̂ SRS(hSRS)) = min
h

MISE(f̂ SRS(h)). (1)

In Chen’s estimator, the bandwidth h = hSRS depends on the unknown f (x). Thus,
f̂ RSS(x; hSRS) is not directly computable from the data.

Barabesi and Fattorini (2002) studied the kernel density estimator for the unbalanced
RSS, that is

f̂ RSS(x; h) = 1

H

H∑
r=1

1

nrh

nr∑
i=1

K

(
x − X(r)i

h

)
. (2)

They computed its MISE and asymptotic MISE, and show that asymptotically the balanced
RSS is equally efficient in MISE to the unbalanced RSS with the optimal sample allocation.
They also studied the properties of the kernel estimator for the balanced RSS, and considered
a few choices of bandwidth, which were originally suggested for the SRS.

In this article, we study the kernel density estimator (2), where the kernel function
K(t) is symmetric about 0 and∫

K(t)dt = 1,

∫
t2K(t)dt �= 0, (3)
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2158 Lim et al.

and |t |3K(t) → 0 as t increases. Note that the kernel function K(t) is the same as that in
Chen (1999). We show that the optimal bandwidth for the balanced RSS is same with that
for the SRS, and can be estimated by treating the RSS data as the SRS data. We propose a
plug-in estimator of the bandwidth for the unbalanced RSS data.

This article is organized as follows. In Sec. 2, we review the asymptotic MISE of the
estimator f̂ RSS in (2) and find the optimal bandwidth, denoted by hRSS, that minimizes the
asymptotic MISE. We show that hSRS, the optimal bandwidth for SRS used in Chen (1999),
is also optimal for the balanced RSS, i.e., it minimizes the MISE of (2) when the RSS is
balanced. Thus, in (1),

min
h

MISE(f̂ RSS(h)) = MISE(f̂ RSS(hSRS)). (4)

The optimal bandwidth hRSS also depends on the unknown density function f (x) and
is not directly computable from data. In this section, we propose to estimate hSRS, the
optimal bandwidth for SRS, by treating RSS as SRS, and then estimate hRSS using the
asymptotic relationship between hRSS and hSRS. We write the proposed estimator of hSRS

and hRSS as hp.SRS and hp.RSS, respectively. In Sec. 3, we consider the case when the
distribution is symmetric. The symmetry in the density function allows a better kernel
estimator. We introduce two new estimators to take advantage of the symmetry. If the
density f (x) is symmetric with respect to μ, i.e., f (x + μ) = f (−x + μ), then we have
f(r)(μ − x) = f(H−r+1)(μ + x) for r = 1, 2, . . . , H . We define new estimators by merging
the samples of rank strata r and H − r + 1 for r = 1, 2, . . . , H . We numerically show that
this estimator outperforms its asymmetric (without symmetry) counterpart. In Sec. 4, we
numerically compare the MISEs of the proposed f̂ RSS

(
x; hp.RSS) with its SRS counterpart.

We also show that the symmetrized kernel estimator has smaller MISE than the asymmetric
estimator if the true density f (x) is symmetric. In Sec. 5, we analyze the tree height data
from Chen et al. (2003) and show that the unbalanced RSS may provide a better density
function estimator than the balanced RSS. In Sec. 6, we conclude the article with a brief
summary.

2. Asymptotic MISE and Optimal Bandwidth

The bandwidth selection is an important step in estimating the density using the kernel
method. In this section, we derive the optimal bandwidth that minimizes the (MISE) of
f̂ RSS. We assume that the population density f (x) is twice differentiable at every x.

2.1. MISE

We first compute the MISE of f̂ RSS. For each rank stratum r, let

f̂ (r)(x; h) = 1

nrh

nr∑
i=1

K

(
x − X(r)i

h

)
,

which is the kernel density estimator of the density function f(r)(x) of the r−th stratum.
Using the results on the RSS (see Wand and Jones, 1995), for each r, the bias and the
variance of f̂ (r)(x; h) are, respectively,

bias(f̂ (r)(x; h)) = 1

2
i2(K)f (2)

(r) (x)h2 + o(h2) (5)
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Kernel Density Estimator From Ranked Set Samples 2159

and

var(f̂ (r)(x; h)) = 1

nrh
i0(K2)f(r)(x) + o

(
1

nrh

)
, (6)

where il(g) = ∫
xlg(x)dx. Since

bias(f̂ RSS(x; h)) = 1

H

H∑
r=1

bias(f̂ (r)(x; h))

and

var(f̂ RSS(x; h)) = 1

H 2

H∑
r=1

var(f̂ (r)(x; h)),

we have from (5) and (6) that

bias(f̂ RSS(x; h))2 = 1

4
i2(K)2

{
1

H

H∑
r=1

f
(2)
(r) (x)

}2

h4 + o(h4)

= 1

4
i2(K)2{f (2)(x)}2h4 + o(h4

)
var(f̂ RSS(x)) = 1

H 2

H∑
r=1

1

nrh
i0(K2)f(r)(x) + o

(
1

h minr (nr )

)
.

Thus, the MISE of f̂ RSS(x; h) becomes

MISE(f̂ RSS(x; h)) = 1

H 2h

H∑
r=1

1

nr

i0(K2)

+ 1

4
i2(K)2i0{(f (2))2}h4 + o

(
max

(
1

h min(nr )
, h4

))
. (7)

2.2. Optimal Bandwidth

Simple algebra shows that the optimal bandwidth h to minimize the MISE in (7) is

hRSS =
{∑H

r=1(1/(nrH
2))i0(K2)

i2(K)2i0((f (2))2)

}1/5

. (8)

This brings two interesting findings. First, in the balanced RSS with nr = m for every r,
hRSS equals to hSRS, which is the optimal bandwidth for SRS with a size N = ∑H

r=1 nr :

hRSS = hSRS = i2(K
)−2/5

{
i0(K2)

i0((f (2))2)

}1/5

N−1/5. (9)

This implies that Chen (1999)’s estimator f̂ RSS(hSRS) is optimal to minimize the MISE,
and

min
h

MISE(f̂ RSS(h)) = MISE(f̂ RSS(hSRS))

≤ MISE(f̂ SRS(hSRS)) = min
h

MISE(f̂ SRS(h)).
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2160 Lim et al.

Second, in unbalanced RSS, hRSS and hSRS are asymptotically proportional to each other
as

hRSS

hSRS
≈

{∑H
r=1(1/(nrH

2))

1/
∑H

r=1 nr

}1/5

=
{

N

H 2

H∑
r=1

(1/nr )

}1/5

, (10)

where the proportionality constant depends only on sample sizes.

2.3. Estimation of Bandwidth

The optimal bandwidth hRSS and hSRS are functions of the unknown density function f (x),
because in (8),

i0((f (2))2) =
∫ {

f (2)(x)
}2

dx =
∫

f (4)(x)f (x)dx

is a function of unknown f (x) and here we aim to estimate this quantity.
For SRS, several procedures have been proposed in the literature. Suppose X1, . . . , Xn

form a SRS from f (x). Park and Marron (1990) estimated î0
(
(f (2))2

)
with

1

n(n − 1)

1

α5

∑
i �=j

L(4)

(
Xi − Xj

α

)
(11)

where L is the kernel function satisfying the conditions in (3). Hall and Marron (1987) used
the optimal bandwidth α to estimate i0((f (2))2) as

α1 =
{

18 · i0(L(4) ∗ L)

i2(L ∗ L)
· i0(f 2)

i0{(f (3))2}
}1/13

n−2/13 (12)

with L ∗ L(x) = ∫
L(x − t)L(t)dt . The bandwidth α1 again depends on derivatives of the

unknown density f (x). Park and Marron (1990) proposed to estimate α1 by replacing f in
(12) with a density of the scale family; they used the normal distribution with mean 0 and
estimated variance. On the other hand, Sheather and Jones (1991) used the estimator

î0
{(

f (2)
)2} = 1

n2

1

α5

∑
i,j

L(4)

(
Xi − Xj

α

)
(13)

and

α2 =
{

2L(4)(0)

i2(L)i0(f (3))

}1/7

n−1/7.

They showed that (13) produces a bandwidth estimator which performs better than that
based on α1 in both theory and computation.

In balanced RSS, i0((f (2))2) can be estimated using (11) or (13) by treating the RSS as
SRS. The kernel estimator for the balanced RSS is

f̂ RSS(x; h) =
H∑

r=1

m∑
i=1

w(r)j
1

h
L

(
x − X(r)i

h

)
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Kernel Density Estimator From Ranked Set Samples 2161

and its fourth derivative is

f̂
(4)
RSS(x; h) =

H∑
r=1

m∑
i=1

w(r)j
1

h5
L(4)

(
x − X(r)i

h

)
with w(r)j = 1/(H · m). We then estimate

i0
{(

f (2)
)2} =

∫
f (4)(x)f (x)dx

unbiasedly as

H∑
r1=1

m∑
j1=1

w(r1)j1

⎧⎨⎩
H∑

r2=1

m∑
j2=1

w(r2)j2

1

h5
L(4)

(
X(r1)j1 − X(r2)j2

h

)⎫⎬⎭ . (14)

The resulting bandwidth equals to the bandwidth of Sheather and Jones (1991) for SRS
and, simply, can be evaluated by treating RSS as SRS.

For unbalanced RSS, we propose to estimate hSRS by treating the RSS as a SRS as in
balanced RSS. We denote the resulting estimate as hp.SRS. Then, motivated by the identity
(10), we estimate hRSS as

hp.RSS =
{

N

H 2

H∑
r=1

(1/nr )

}1/5

hp.SRS. (15)

In balanced RSS, hp.RSS equals to hp.SRS. The bandwidth estimators hp.SRS and hp.RSS lead
to new kernel estimators f̂ RSS(x; hp.SRS) and f̂ RSS(x; hp.RSS), respectively.

3. Symmetric Distribution

We show that, when the population distribution is symmetric with respect to μ, f(r)(μ −
x) = f(H−r+1)(μ + x) for r = 1, . . . , H . Suppose that X1, . . . , XH are identically and
independently distributed (IID) from a symmetric distribution with a density function
f (x), satisfying f (μ − x) = f (μ + x). Let F (x) and F(r)(x) be the population cumulative
distribution function (cdf) and the cdf of the rth order statistic, respectively. Since we know

F (μ − x) + F (μ + x) = 1

from the symmetry,

F(r)(μ − x) = 1

Beta(r,H − r + 1)

∫ F (μ−x)

0
t r−1(1 − t)H−rdt

= 1

Beta(r,H − r + 1)

∫ 1

1−F (μ−x)
(1 − s)r−1sH−rds

= 1 − 1

Beta(r,H − r + 1)

∫ F (μ+x)

0
(1 − s)r−1sH−rds

= 1 − F(H−r+1)(μ + x).
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2162 Lim et al.

Thus, we have

f(r)(μ − x) = f(H−r+1)(μ + x). (16)

We now propose a new estimator f̂ sym(x) for the symmetric density function using
(16):

f̂ sym(x) = 1

2
{f̂ (x) + f̂ (2μ − x)}

= 1

H

H∑
r=1

1

2
{f̂ (r)(x) + f̂ (r)(2μ − x)}

= 1

H

H∑
r=1

1

2
{f̂ (r)(x) + f̂ (H−r+1)(2μ − x)}

In the above, μ is unknown in practice and is replaced with μ̂RSS.
We show that the new estimator has smaller MISE than the asymmetric estimator f̂ .

First, the bias of f̂ sym is:

bias(f̂ sym(x)) = 1

2
{bias(f̂ (x)) + bias(f̂ (2μ − x))}

= 1

2H

H∑
r=1

{
(1/2)i2(K)f (2)

(r) (x)h2 + (1/2)i2(K)f (2)
(r) (2μ − x)h2 + o(h2)

}

= 1

4
i2(K)h2

{
1

H

H∑
r=1

(
f

(2)
(r) (x) + f

(2)
(r) (2μ − x)

)} + o(h2)

= 1

4
i2(K)h2

{
1

H

H∑
r=1

(
f

(2)
(r) (x) + f

(2)
(H−r+1)(2μ − x)

)} + o(h2)

= 1

2
i2(K)h2f (2)(x) + o(h2),

which is equal to that of f̂ (x).
Second, the variance equals to

1

4
{var(f̂ (x)) + var(f̂ (2μ − x)) + 2cov(f̂ (x), f̂ (2μ − x))},

where

cov(f̂ (x), f̂ (2μ − x)) ≤ {var(f̂ (x))}1/2{var(f̂ (2μ − x))}1/2.

In addition, we find that

var(f̂ (2μ − x)) = 1

H 2

H∑
r=1

1

nrh
i0(K2)f(r)(2μ − x) + o

(
1

h minr (nr )

)

= 1

H 2

H∑
r=1

1

nrh
i0(K2)f(r)(x) + o

(
1

h minr (nr )

)

= var(f̂ (x)) + o

(
1

h minr (nr )

)
. (17)
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Kernel Density Estimator From Ranked Set Samples 2163

Thus, var(f̂ sym(x)) ≤ var(f̂ (x)) + o(1/(h minr (nr ))). Asymptotically, f̂ sym has smaller
MISE (or variance) than f̂ .

We propose another estimator which would be more efficient than f̂ sym. The currently
proposed estimator f̂ sym(x) estimates f(r)(x) by

f̂
sym
(r) (x) = 1

2
{f̂ (r)(x) + f̂ (H−r+1)(2μ − x)} (18)

using the fact f(r)(μ − x) = f(H−r+1)(μ + x). We could instead consider

f̃
sym
(r) (x) = nr

nr + nH−r+1
f̂ (r)(x) + nH−r+1

nr + nH−r+1
f̂ (H−r+1)(2μ − x). (19)

This estimator can be computed by estimating f(r)(x) using both X(r)i and 2μ−X(H−r+1)j for
i = 1, 2, . . . , nr and j = 1, 2, . . . , nH−r+1. To be specific, suppose we refer the combined
samples as y(r)i’s for i = 1, 2, . . . , n′

r with n′
r = nr+nH−r+1. We estimate f(r)(x) as follows.

• If H = 2m + 1, for r = 1, . . . , m,

f̃ (r)(x; h) = 1

n′
r

n′
r∑

i=1

1

h
K

(
x − y(r)i

h

)
,

and for r = m + 1,

f̃ (m+1)(x; h) = 1

nm+1

nm+1∑
i=1

1

h
K

(
x − y(m+1)i

h

)
.

• If H = 2m, for r = 1, . . . , m,

f̃ (r)(x; h) = 1

n′
r

n′
r∑

i=1

1

h
K

(
x − y(r)i

h

)
,

.
• In both cases, for [H/2] + 1 ≥ r ,

f̃ (r)(x; h) = f̃ (H−r+1)(x; h).

It is worth noting that

f̃ (r)(x; h) = nr

nr + n(H−r+1)
f̂ (r)(x; h) + n(H−r+1)

nr + n(H−r+1)
f̂ (H−r+1)(2μ − x; h).

and it provides the estimator:

f̃ sym(x; h) = 1

H

H∑
r=1

f̃ (r)(x; h).
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2164 Lim et al.

The unequally weighted estimator f̃ sym(x; h) may have smaller MISE than f̂ sym(x; h),
since, for each r, f̃ (r)(x; h) is more efficient (has smaller variance) than f̂

sym
(r) (x; h). We

numerically compare their MISEs in next section.

4. Simulation Studies to Compare Relative Efficiency

In this section, we numerically compare the MISEs of the kernel estimators in previous
sections with respect to their SRS counterpart.

This study is designed as follows. We use four different distributions as the true
underlying distributions: (i) standard normal distribution; (ii) gamma distribution with α =
1 and β = 3; (iii) t-distribution with 3 degrees of freedom; and (iv) uniform distribution on
[0, 1]. We consider H = 2, 3, 4, and n are vectors of 4 and 8. We use the grid approximation
to compute the MISE, where the grids are from the 5th to 95th percentile of each distribution.
In each case, we generate 10,000 data sets and compute the MISE of the estimates.

In the estimation, we use the normal kernel and estimate the bandwidth for SRS using
the function “dpik” in the R package “kernsmooth.” It implements the procedure by Sheater
and Jones (1991). We consider six different kernel estimators in the study:

(i) f̂ SRS: the kernel estimator based on SRS and hSRS. We estimate hSRS using the
procedure by Sheather and Jones (1991).

(ii) f̂ oracle: the kernel estimator based on RSS with bandwidth hRSS. We compute hSRS

by plugging the true density into (8).
(iii) f̂ p.SRS: the kernel estimator based on RSS with bandwidth hp.SRS.
(iv) f̂ p.RSS: the kernel estimator based on RSS with bandwidth hp.RSS.
(v) f̂

sym
p.RSS: the equally weighted symmetric kernel estimator based on f̂ p.RSS.

(vi) f̃
sym
p.RSS: the unequally weighted symmetric kernel estimator based on f̂ p.RSS.

We compute the relative efficiencies (RE) of (ii)–(vi) against (i).
Table 1 reports the REs of (ii)–(vi) against (i). The RE of f̂ 1 against f̂ 2 is defined by

RE(f̂ 1, f̂ 2) = MISE(f̂ 2, f )

MISE(f̂ 1, f )
,

where, for i = 1, 2,

MISE(f̂ i , f ) =
∫

{f̂ i(x) − f (x)}2dx.

The REs in the table are the average of MISEs of densities from 10,000 simulated data sets.
Table 1 shows that the proposed f̂ p.RSS performs better than f̂ SRS except one case

(the case with unbalanced small size sample from the t−distribution). Two estimators
f̂ p.RSS and f̂ SRS are equal to each other in balanced RSS, and are optimal in terms of
MISE. In unbalanced RSS, f̂ p.RSS performs better than f̂ p.SRS in most of cases. Second,
the table shows that the REs of f̂ p.RSS are higher for the balanced RSS than the unbalanced
RSS. For example, the RE of f̂ p.RSS with n = (4, 4, 4) performs better than f̂ p.RSS with
n = (4, 4, 8) in all cases. This would not be surprising if we recall that f̂ p.RSS is sub-optimal
for unbalanced RSS. The third finding we make is that the efficiency-loss from estimating
the bandwidth is significant; the REs of f̂ p.RSS are smaller than f̂ oracle in all cases. Finally,
in the table, the RE tends to decrease as the number of replication increases. Please find the
differences between (4, 4) and (8, 8), (4, 4, 4) and (8, 8, 8), and (4, 4, 4, 4) and (8, 8, 8, 8).
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Table 1
Relative efficiencies of kernel estimators

Dist. H n f̂ oracle f̂ p.SRS f̂ p.RSS f̂
sym
p.RSS f̃

sym
p.RSS

Normal 2 (4,4) 1.330 1.002 1.002 1.374 1.374
2 (4,8) 1.296 1.100 1.127 1.565 1.609
2 (8,8) 1.299 1.015 1.015 1.348 1.348
3 (4,4,4) 1.507 1.247 1.247 1.646 1.646
3 (4,4,8) 1.431 1.216 1.236 1.673 1.690
3 (8,8,8) 1.389 1.136 1.136 1.489 1.489
4 (4,4,4,4) 1.579 1.330 1.330 1.816 1.816
4 (4,4,8,8) 1.491 1.208 1.233 1.677 1.691
4 (8,8,8,8) 1.493 1.305 1.305 1.773 1.773

Gamma 2 (4,4) 1.283 1.146 1.146 −− −−
2 (4,8) 1.183 1.064 1.058 −− −−
2 (8,8) 1.140 1.045 1.045 −− −−
3 (4,4,4) 1.182 1.099 1.099 −− −−
3 (4,4,8) 1.200 1.071 1.061 −− −−
3 (8,8,8) 1.132 1.065 1.065 −− −−
4 (4,4,4,4) 1.183 1.134 1.134 −− −−
4 (4,4,8,8) 1.162 1.022 1.009 −− −−
4 (8,8,8,8) 1.127 1.097 1.097 −− −−

t 2 (4,4) 1.395 1.193 1.193 1.480 1.480
2 (4,8) 1.166 0.962 0.983 1.232 1.256
2 (8,8) 1.294 1.090 1.090 1.255 1.255
3 (4,4,4) 1.378 1.253 1.253 1.474 1.474
3 (4,4,8) 1.260 1.151 1.169 1.413 1.415
3 (8,8,8) 1.380 1.166 1.166 1.365 1.365
4 (4,4,4,4) 1.560 1.319 1.319 1.556 1.556
4 (4,4,8,8) 1.338 1.149 1.169 1.379 1.412
4 (8,8,8,8) 1.403 1.248 1.248 1.472 1.472

Uniform 2 (4,4) 1.409 1.129 1.129 1.398 1.398
2 (4,8) 1.227 1.010 1.032 1.289 1.319
2 (8,8) 1.253 1.108 1.108 1.336 1.336
3 (4,4,4) 1.494 1.331 1.331 1.639 1.639
3 (4,4,8) 1.309 1.129 1.147 1.438 1.431
3 (8,8,8) 1.290 1.180 1.180 1.394 1.394
4 (4,4,4,4) 1.506 1.401 1.401 1.692 1.692
4 (4,4,8,8) 1.313 1.196 1.213 1.487 1.509
4 (8,8,8,8) 1.299 1.203 1.203 1.419 1.419

This is simply because the MISE of f̂ RSS decreases as the number of replication increases,
and tells that the RSS is more effective than the SRS when the sample size is small.

The symmetrization notably improves the REs of the estimators. Two symmetrized
estimators even outperform f̂ oracle in several cases. Between the two, the unequally weighted
f̃

sym
p.RSS performs better than the equally weighted f̂ p.RSS.
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5. An Empirical Study

In this section, we apply the proposed kernel estimators to analyzing the tree height data
from Platt et al. (1988) and Chen et al. (2003). We treat the reported tree height data as true
population. We apply unbalanced designs along with their balanced counterpart to illustrate
the usefulness of the unbalanced designs. The results show that a well-selected unbalanced
design can provide a better density estimate than balanced one.

The tree height data has a right-skewed density on the positive line as shown in
Fig. 1. In the RSS experiment with H = 2, we expect that the observations of r = 2 are
more volatile (have higher variance) than r = 1 (because those are bounded below by 0).
Thus, the estimation of f(2)(x) needs more observations than that of f(1)(x) to get a given
level of efficiency (or MISE). To have this in mind, we apply three designs with H = 2 to
estimate the density of tree height; (i)

(
n1, n2

) = (5, 5); (ii) (n1, n2) = (3, 7); (iii) (n1, n2) =
(2, 8).

As in the numerical study, we generate 1,000 RSS data sets and estimate their density
functions for each of the case. In Fig. 2, we plot the bias, the variance, and the MSE of
kernel estimators based on the three designs.

The results show that both unbalanced designs
(
n1, n2

) = (3, 7) and (n1, n2) = (2, 8)
perform better than their balanced counterpart. This would not be surprising if we recall
that the underlying density of tree height data is skewed to the right.
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Figure 1. Histogram of tree height data.
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Figure 2. The bias, variance, and MSE of kernel estimators

6. Conclusion

We finish this article with a brief summary. Here, we study the kernel density estimator
based on RSS. First, we compute asymptotic MISE for RSS and the asymptotic optimal
bandwidth to minimize it. We show that the optimal bandwidth for balanced RSS is equal to
that for SRS. Second, we propose a plug-in estimator of the asymptotic optimal bandwidth
and the kernel estimator using it. The numerical study shows that the proposed estimator
performs better than its SRS counterpart. Third, we propose two estimators for a symmetric
distribution, which outperforms their asymmetric counterpart. Finally, the analysis of tree
height data illustrates that a well designed unbalanced RSS can provide a better density
estimator than the balanced RSS.
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Oztúrk, O. (2009). Nonparametric maximum-likelihood estimation of within-set ranking errors in
ranked set sampling. J. Nonparametric Statist. 22(7):823–840.

Park, B. U., Marron, J. S. (1990). Comparison of data-driven bandwidth selectors. J. Amer. Statist.
Assoc. 85:409, 66–72.

Platt, W. J., Evans, G. M., Rathbun, S. L. (1988). The population dynamics of long-lived conifer
(Pinus plaustris) (1988). Amer. Natrualist 131:491–525.

Sheather, S. J., Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. J. Roy. Statist. Soc. Ser. B 53(3):683–690.

Stokes, S. L., Sager, T. W. (1988). Characterization of a ranked set sample with application to
estimating distribution functions. J. Amer. Statist. Associ. 83:374–381.

Wand, M. P., Jones, M. C. (1995). Kernel Smoothing. London: Chapman and Hall.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ar
yl

an
d 

B
al

tim
or

e 
C

ou
nt

y]
 a

t 0
6:

27
 2

5 
A

pr
il 

20
14

 


