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Abstract

In this paper, we propose a new set of mean estimators for judgment post-stratified data with multiple
rankers. The new estimators take into account matrix partial ordering in cumulative distribution func-
tions of rank strata, and they are derived by improving existing estimators through employing the order
constraints and solving a generalized isotonic regression problem. Numerical studies show that the pro-
posed isotonized mean estimators outperform the existing estimators. Finally, the proposed estimators
are applied to estimating the average tree height using the tree data in Chen et al. (2006).
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1 Introduction

Both ranked set sampling (RSS) and judgment post-stratification (JPS) are established cost-effective methods
of data collection, and are useful in situations when the characteristic of interest Y is expensive to measure
but sampling units can be easily gathered and ranked by some means without exact measurements. Both
utilize the assigned ranks to provide auxiliary information on the measured units. They can provide improved
estimators of the population mean, variance and distribution functions over simple random samples (SRS) of
the same size. However, unlike RSS, JPS is based on a simple random sample (SRS), in which the actually
measured units are post-stratified on ranks, and so the number of measured units nh in each rank stratum
h (in the one-ranker case), h = 1, . . . ,H, is a random variable, where H is a pre-determined set size, and
(n1, . . . , nH) jointly follows the multinomial distribution with parameters

(
n, 1/H, ..., 1/H

)
. JPS has several

advantages over RSS as explained in Wang et al. (2012). For example, JPS can easily allow more than
one ranker to provide ranking information about the same measured unit, which can further improve the
estimation efficiency when rankers have some ranking skill and are not identical.

JPS experiments with multiple rankers are first introduced by MacEachern et al. (2004). For example,
suppose we are interested in estimating the mean volume of trees in a forest so that Y denotes the tree
volume. The JPS data with m rankers are constructed as follows. First, a simple random sample of H trees
is selected from the forest. Among the H trees, one tree is randomly selected and marked for later actual
measurement; and each ranker assesses the rank of this tree in comparison to the (H − 1) trees based on
visual inspection of their volumes, and assigns a rank value among {1, · · · , H} to the tree. Here, ranking
errors could occur so that rankers do not necessarily agree on the assigned ranks. This step is repeated
for an additional (n − 1) times until n trees in total are marked for later measurements, along with their
ranks assigned by the m rankers among their own comparison groups. Next, each of the n trees is cut
down, dragged to a mill and cut into logs for measuring its volume. Suppose Y is absolutely continuous
with population mean µ and finite variance σ2. Let Oi,k denote the judgment order assigned by ranker k
for the ith measured tree, where Oi,k ∈ {1, · · · , H} for i = 1, . . . , n and k = 1, . . . ,m. The JPS sample with
m rankers consists of data in the form of

{
Yi,Oi

}n
i=1

where Oi =
(
Oi,1, . . . , Oi,m

)
. The n measured units

form a simple random sample from the population; and they fall into Hm post-strata formed by the orders.
Let Y[r] denote Y |O = r, any observation falling in the r-th post-stratum, where r = (r1, . . . , rm) and each
rk ∈ {1, · · · , H}. Let nr, Y [r], µ[r], and σ2

[r] denote the sample size, sample mean, population mean and
variance in the r-th stratum, respectively.

In the literature several nonparametric mean estimators have been proposed for JPS with multiple rankers.
MacEachern et al. (2004), who first introduced JPS, proposed a mean estimator that prorates each measured
value Yi to the original H judgment strata according to the proportion of the rankers that assign the value to
stratum h, h = 1, . . . ,H. Stokes et al. (2007) considered two different estimators to utilize the information
from multiple rankers. The first estimator is a weighted average of sample means of the Hm post-strata
jointly formed by the m rankers, where each sample mean Y [r] is weighted by the estimated probability
from the raking method that a randomly selected observation falls in the corresponding r-th post-stratum.
The second is the Best Linear Unbiased Estimator (BLUE) in the form of a linear combination of JPS mean
estimators based on each single ranker, whose weights are set to minimize the variance of the linear estimator.

In both RSS and JPS (with one ranker only), researchers often exploit distributional properties of Y[r]s
to improve the estimation efficiency (Ozturk, 2007; Frey and Ozturk, 2011; Wang et al., 2008). An example
is stochastic ordering among cumulative distribution functions (CDF) of different rank strata. For every
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y ∈ R,
F(1)(y) ≥ F(2)(y) ≥ · · · ≥ F(H)(y),

where F(h)(y) is the CDF of the h-th order statistic. Further, in the presence of imperfect ranking, it is often
reasonable to assume

F[1](y) ≥ F[2](y) ≥ · · · ≥ F[H](y),

where F[h](y) is the CDF of the h-th judgment order statistic (Wang et al. 2008). By considering the above
constraints, Ozturk (2007) proposed to modify the empirical CDF estimator by minimizing the Cramer-von
Mises distance. The new estimator has been shown to have smaller integrated Mean Squared Error (MSE)
than the empirical one. Wang et al. (2008) also introduced an isotonized estimator of the population mean
for JPS data, which improves estimation efficiency of the conventional JPS mean estimator.

In this paper, we consider the monotonicity in CDFs of rank strata formed by multiple rankers, and
propose a new set of estimators by monotonizing Y [r]s using generalized isotonic regression. In the cases
of multiple rankers, it is reasonable to assume that F[r], the CDF of the r-th judgment stratum, follows a
matrix partial order; that is, if r1 =

(
r11, . . . , r1m

)
, r2 =

(
r21, . . . , r2m

)
, and r1 ≤ r2 in a component-wise

manner (i.e., r1k ≤ r2k for all k = 1, . . .m), then

F[r1](y) ≥ F[r2](y) (1)

for every y. The order (1) further induces an order in the corresponding stratum means

µ[r1] ≤ µ[r2]. (2)

Here we propose to modify the sample means Y [r] by solving the generalized isotonic regression problem
under the matrix partial order (2). Finally, we develop a set of new estimators based on existing estimators
for JPS with multiple rankers, where we use isotonized mean estimators µ̂∗[r] to replace the sample means
Y [r].

This paper is organized as follows. In Section 2, we review existing mean estimators for JPS data with
multiple rankers. In Section 3, we propose a new set of estimators that incorporate the matrix partial
ordering among stratum means into estimation. In Section 4, we numerically compare the performance of
the new set of isotonized estimators to their non-isotonic counterparts. In Section 5, we apply the new
estimators to estimating the mean of tree height data reported in Chen et al. (2006). In Section 6, we
conclude the paper with a brief discussion.

2 Existing JPS Mean Estimators with Multiple Rankers

Recall that JPS data form a post-stratified sample using the auxiliary information from multiple rankers.
Thus, the population mean has the following form:

µ =
∑
r

πrµ[r], (3)

where πr ≡ P (O = r) denotes the probability that an observation falls in the r-th post-stratum. If we have a
single ranker (i.e., m = 1), the probability πr is known to be 1/H. However, in the case of multiple rankers,
unless assumptions are made about both the distribution of Y and the ranking process, πrs are known only
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up to their one-dimensional marginal probabilities, which are all equal to 1/H. They should be estimated or
pre-decided, which makes the problem more complicated. To estimate the population mean from JPS data
with multiple rankers, we may first consider the nonparametric estimator proposed by MacEachern et al.
(2004),

µ̂msw =
1

H

H∑
h=1

∑m
k=1

∑n
i=1 I

(
Oi,k = h

)
Yi∑m

k=1

∑n
i=1 I

(
Oi,k = h

) , (4)

where I
(
·
)
is the indicator function. The estimator can be rewritten in the form of (3),

µ̂msw =
∑
r

π̂msw
r Y [r], (5)

where

π̂msw
r =

1

H

H∑
h=1

Sh(r)nr∑
r′ Sh(r′)nr′

and Sh(r) is the count of rank h in the row vector r. If there are only two rankers (i.e., m = 2), then for
every s, t ∈ {1, . . . ,H},

π̂msw
s,t =

1

H

(
ns,t

ns. + n.s
+

ns,t
nt. + n.t

)
,

where ns.(or n.t) denotes the number of sample units for which Oi,1 = s (or Oi,2 = t). Note that π̂msw
r = 0

for empty cells r whenever nr = 0 (0/0 is defined as 0).
The estimator by MacEachern et al. (2004) inherently assumes that all rankers are equally effective by

assigning equal weight to each of them. However, this is often restrictive in practice. More recently, Stokes et
al. (2007) considered two estimators, the Raking estimator and the Best Linear Unbiased Estimator (BLUE).
The Raking estimator, denoted by µ̂rake, estimates µ[r] with Ȳ[r], and estimates πr with the maximum likeli-
hood estimator (MLE) under marginal probability constraints

∑
r:rk=h πr = 1/H for every k = 1, . . . ,m and

h = 1, . . . ,H. The constrained MLE, π̂rake
r , is computed using an Iterative Proportional Fitting procedure,

called “raking” (Pelz and Good, 1986). Thus, µ̂rake is given by

µ̂rake =
∑
r

π̂rake
r Ȳ[r]. (6)

Note that for empty cells, π̂rake
r is set to zero unless 0/0 occurs when the raking procedure cannot proceed

and returns “NA”. When there exists a large portion of empty cells, π̂rake
r often performs poorly (Thompson,

1981).
The BLUE linearly combines the JPS mean estimators from individual rankers by considering the class of

linear estimators in the form of
∑m

k=1 wkµ̂k, where the weights wk ≥ 0 for every k, satisfying
∑m

k=1 wk = 1;
and µ̂k is the JPS mean estimator using only the rank information from the k−th ranker,

µ̂k =
1

H

H∑
h=1

∑n
i=1 I

(
Oi,k = h

)
Yi∑n

i=1 I
(
Oi,k = h

) .

Then the BLUE finds the weights w∗ks that minimize the variance of
∑m

k=1 wkµ̂k, which requires the co-
variance matrix of (µ̂1, . . . , µ̂m). Stokes et al. (2007) estimated the covariance matrix using a bootstrapping
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method. The BLUE estimator, µ̂blue, can also be written in the form of (3):

µ̂blue =
∑
r

π̂blue
r Y [r], (7)

with

π̂blue
r =

1

H

H∑
h=1

m∑
k=1

w∗k
I(rk = h)nr∑
r′ I(r

′
k = h)nr′

,

where rk is the k−th component of r. When there are empty cells, π̂blue
r = 0 where nr = 0 (0/0 is defined

as 0). Similarly, for the case with two rankers,

µ̂blue =

H∑
s=1

H∑
t=1

π̂s,tY [s,t],

with
π̂s,t =

1

H

(
w∗1

ns,t
ns.

+ w∗2
ns,t
n.t

)
.

3 Generalized Isotonized Mean Estimators

In this section, we propose a new set of mean estimators for JPS data with multiple rankers. Wang et al.
(2008) considered the monotonicity among means of judgment strata,

µ[1] ≤ · · · ≤ µ[H],

and proposed an isotonized mean estimator

µ̃ =
1

H

H∑
h=1

µ̃[h],

where µ̃[h] is the solution to the isotonic regression problem:

minimize
∑H

h=1 nh
(
Y [h] − µ[h]

)2
subject to µ[1] ≤ · · · ≤ µ[H].

(8)

They numerically showed that the isotonized mean estimator performed better than the original JPS esti-
mator (5).

For JPS with multiple rankers, we consider the matrix partial orders among µ[r]s. To be specific, we
assume that F[r]s are stochastically ordered in the sense that, if r1 ≤ r2 in a component-wise manner, then
for any y ∈ R, F[r1](y) ≥ F[r2](y). The stochastic order in stratum CDFs induces the built-in ordering in
the means of the strata; that is, if r1 ≤ r2, then µ[r1] ≤ µ[r2]. However, the sample means Y [r]s, the most
common empirical estimator of µ[r], often do not satisfy the order constraints (2). We propose to modify
the sample means Y [r] by solving the following generalized isotonic regression problem:

minimize
∑

r nr
(
Y [r] − µ[r]

)2
subject to µ[r1] ≤ µ[r2], if r1 ≤ r2.

(9)
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We finally suggest a set of new estimators using the isotonized mean estimators µ̂∗[r], which are the solution
to the above optimization problem, for Y [r] in (5), (6), and (7).

As in JPS with a single ranker, we have that µ̂∗[r] is a strongly consistent estimator of µ[r], if Y [r] is
strongly consistent for µ[r] (Barlow et al., 1972). Let

µ̃ =
∑
r

π̂rµ̂
∗
[r]

be an isotonized mean estimator. We note that

|µ̃− µ| =

∣∣∣∣∣∑
r

π̂[r]

(
µ̂∗[r] − µ[r]

)
+
∑
r

(
π̂[r] − π[r]

)
µ[r]

∣∣∣∣∣
≤
∑
r

π̂[r]

∣∣∣µ̂∗[r] − µ[r]

∣∣∣+
∑
r

∣∣π̂[r] − π[r]∣∣µ[r]. (10)

Based on Slutsky’s Theorem, we can conclude from (10) that µ̃ is also consistent when π̂[r] is a consistent
estimator of πr.

We now explain the algorithm to solve (9). There are several efficient algorithms in the literature (Block
et al., 1994; Qian and Eddy, 1996; Sysoev et al., 2011). We introduce the iterative procedure by Block et
al. (1994). Below we assume two rankers for notation simplicity. The extension to more than two rankers is
straightforward. For the case of two rankers, the problem becomes

minimize
∑

s,t n[s,t]
(
Y [s,t] − µ[s,t]

)2
subject to µ[1,t] ≤ µ[2,t] ≤ · · · ≤ µ[H,t]

µ[s,1] ≤ µ[s,2] ≤ · · · ≤ µ[s,H],

for s, t ∈ {1, . . . ,H}. The algorithm is outlined by the following steps.

• (S1) Let Ŷ(1) =
(
Ŷ

(1)
[s,t], s, t = 1, . . . ,H

)
be the solution to

minimize
∑

s,t n[s,t]
(
Y [s,t] − µ[s,t]

)2
subject to µ[1,t] ≤ µ[2,t] ≤ · · · ≤ µ[H,t], t = 1, . . . ,H

We define the row increments R(1) =
(
R

(1)
[s,t], s, t = 1, . . . ,H) where

R
(1)
[s,t] = Ŷ

(1)
[s,t] − Y [s,t].

• (S2) Let Ỹ(1) =
(
Ỹ

(1)
[s,t], s, t = 1, . . . ,H

)
be the solution to

minimize
∑

s,t n[s,t]
(
Ȳ[s,t] +R

(1)
[s,t] − µ[s,t]

)2
subject to µ[s,1] ≤ µ[s,2] ≤ · · · ≤ µ[s,H], s = 1, . . . ,H.

We define the column increments C(1) =
(
C

(1)
[s,t], s, t = 1, . . . ,H

)
where

C
(1)
[s,t] = Ỹ

(1)
[s,t] −

[
Y [s,t] +R

(1)
[s,t]

]
.
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• (S3) For k ≥ 2, we obtain Ŷ(k) by solving the isotonic regression

minimize
∑

s,t n[s,t]

[
Y [s,t] + C

(k−1)
[s,t] − µ[s,t]

]2
subject to µ[1,t] ≤ µ[2,t] ≤ · · · ≤ µ[H,t], t = 1, . . . ,H,

and define the k−th row increments R(k) =
(
R

(k)
[s,t], s, t = 1, . . . ,H) where

R
(k)
[s,t] = Ŷ

(k)
[s,t] −

[
Y [s,t] + C

(k−1)
[s,t]

]
.

Then, we solve the generalized isotonic regression on Ŷ(k) over columns, that is

minimize
∑

s,t n[s,t]
(
Ȳ[s,t] +R

(k)
[s,t] − µ(s,t)

)2
subject to µ[s,1] ≤ µ[s,2] ≤ · · · ≤ µ[s,H], s = 1, . . . ,H.

Let Ỹ(k) =
(
Ỹ

(k)
[s,t], s, t = 1, . . . ,H

)
be the solution to the above problem. We define the k−th column

increments C(k) =
(
C

(k)
[s,t], s, t = 1, . . . ,H

)
where

C
(k)
[s,t] = Ỹ

(k)
[s,t] −

[
Y [s,t] +R

(k)
[s,t]

]
.

• (S4) We iterate (S3) until the row and the column increments are smaller than a given error bound.

4 Simulation Studies

In this section, we study the behavior of the isotonized mean estimators discussed in section 3. We use the
same imperfect ranking model as in Stokes et al. (2007). In the study, we consider the case of two rankers
(m = 2) with six scenarios. The first three scenarios assume that rankers are equally effective, and the last
three ones assume rankers are not equally effective. We set H to be {2, 4, 10} and n to be {10, 30, 60, 150}.
Let Y be the characteristic of interest, which is generated from four types of distributions: normal, uniform,
lognormal, and exponential (see Table 1 for the parameter settings of the simulation).

For each simulated JPS data set, we compute six estimators:

• µ̂msw (MSW): the estimator by MacEachern et al. (2004).

• µ̂∗msw (Iso-MSW): the isotonized version of µ̂msw.

• µ̂rake (Raking): the Raking estimator by Stokes et al. (2007).

• µ̂∗rake (Iso-Raking): the isotonized version of µ̂rake.

• µ̂blue (BLUE): the BLUE by Stokes et al. (2007).

• µ̂∗blue (Iso-BLUE): the isotonized version of µ̂blue.

To calculate µ̂blue, as in Stokes et al. (2007), we use 200 bootstrapped data sets with size of [n/2].
In our study, the MSE is estimated using 10, 000 JPS data sets. Empty cells frequently arise in JPS

samples with multiple rankers. In all methods, when nr = 0, π̂r is estimated by zero except Raking when
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Scenario Normal Log-normal σ2
y σ2

1 σ2
2 ρ ρ(X1, Y ) ρ(X2, Y ) ρ(X1, X2)

1. EE N(0, 1.34) LogN(0, 0.81) 1.8 1 1 -0.5 0.8 0.8 0.47
2. EE N(0, 1.34) LogN(0, 0.81) 1.8 1 1 0.0 0.8 0.8 0.64
3. EE N(0, 1.34) LogN(0, 0.81) 1.8 1 1 0.5 0.8 0.8 0.82
4. NE N(0, 1) LogN(0, 0.69) 1 0.56 3 -0.5 0.8 0.5 0.14
5. NE N(0, 1) LogN(0, 0.69) 1 0.56 3 0.0 0.8 0.5 0.40
6. NE N(0, 1) LogN(0, 0.69) 1 0.56 3 0.5 0.8 0.5 0.66

Table 1: Parameters of six simulation scenarios. EE: equally effective; NE: non-equally effective.

0/0 occurs, in which case π̂rake
r cannot be estimated. Equivalently, the JPS estimator is in the form of

µ̂ =
∑
r∈E

π̂rµ̂[r],

where E denotes the set of non-empty cells.
We assume that ranking is imperfect. The linear ranking error model is employed, where the two rankers

determine the order of the measurement Y based on ranking variables X1 = Y + ε1 and X2 = Y + ε2,
respectively. The ranking errors (ε1, ε2)T are simulated from a multivariate normal distribution with mean
0 and variance-covariance Σ as

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Note that we can choose σ2
i to control ρ(Xi, Y ), i = 1, 2, the correlation between Xi and Y , which measures

the ranking quality. The correlation between X1 and X2, denoted by ρ(X1, X2), is jointly affected by all
parameters and it represents the similarity in the rankings of the two rankers. We consider six scenarios that
are combinations of two choices of effectiveness of the rankers (i.e., equally versus non-equally effective) and
three correlation values for ranking errors (i.e., ρ ∈ {−0.5, 0, 0.5}). Table 1 shows the six scenarios with the
choices of distribution parameters, σ2

1 , σ2
2 and ρ, along with the resulting correlation coefficients between

any two of X1, X2, and Y .
The performance of the three isotonized estimators are measured by the relative efficiency (RE) with

respect to their un-isotonized peers, i.e., the ratio of the mean squared errors (MSE) of the original JPS
estimators and the MSE of their isotonized versions. Figure 1 shows the RE of the three isotonized estimators
for the normal distribution. From the figure we can make the following observations.

1. In all cases, the isotonized estimators have smaller MSE than their un-isotonized counterparts. This
suggests that no matter which estimator is used, when data show violation of matrix partial orderings,
it is beneficial to use the isotonized version of that estimator.

2. By comparing the six different panels in Figure 1, we find that the RE curves follow similar patterns
and their values are roughly the same, no matter whether the two rankers are equally effective or not, or
whether their ranking errors are correlated or not (although they may affect the choice of estimators).

3. The figure further shows that there is not necessarily a monotone trend of RE with respect to the
sample size n. But as n gets large, RE decreases. This is not surprising because as n → ∞, the
probability of violating the ordering constraints goes to zero, and so RE→ 1.

4. For a fixed sample size, RE tends to be large for large values of H for all three estimators.
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Figure 1: Relative efficiency of the isotonized estimators versus un-isotonized ones for the normal distribution
in all six scenarios. EE: equally effective; NE: non-equally effective.
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Figure 2: Relative efficiency of the isotonized estimators versus un-isotonized ones for the lognormal distri-
bution in all six scenarios. EE: equally effective; NE: non-equally effective.
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5. Among the three estimators, Raking benefits the most, especially when H is large and the sample size
is small.

Figure 2 shows the RE of the lognormal distribution for the four scenarios. We also plot the RE for the
uniform and exponential distributions (data not reported here). Their patterns are similar to the normal
distribution with the exception that the uniform distribution has larger RE than others while the RE values
of the exponential distribution are between the normal and the lognormal distributions.

Next we study the efficiency of the three estimation approaches, after employing the monotonicity con-
straints, for different choices of ranking efficiencies, correlations of ranking errors, the sample size n and
the set size H, and the distributions of Y . In below, to measure the size of the improvements in the three
isotonized estimators, we use the relative efficiency with respect to the SRS, a common reference estimator
for the purpose of fair comparisons. The results are listed in Table 2.

From Table 2 we make the following observations.

1. It is easy to see that, in most cases, RE increases with H when the sample size n is fixed, and RE also
increases with n when H is fixed.

2. In all three isotonized estimators, in most situations the ones based on negatively correlated and
uncorrelated rankers (i.e., negatively correlated or uncorrelated ranking errors) have higher RE than
those based on correlated rankers, regardless of whether the effectiveness of the two rankers are equal.
Similar observations can be made in the lognormal (the right panel of Table 2) and other distributions
(data not reported). This can be explained by the fact that two negatively correlated or uncorrelated
rankers provide complementary or independent information on the ranks of Y , unlike the correlated
rankers that offer overlapping information. If two rankers are extremely correlated and their rankings
are almost the same, then the marginal benefit from the additional information provided by the second
ranker is virtually zero.

3. When the two rankers are equally effective in ranking, Iso-MSW works quite well when compared with
the other two methods. However, when the rankers are unequally effective, its performance is not as
good as the other two in a large portion of the simulation situations. This is not surprising since MSW
assumes equal effectiveness of multiple rankers and assigns equal weights to all rankers. Iso-Raking
works poorly for cases with small n, but does well for cases with large n. When the sample size n is
small or the set size H is large, there are many empty strata (i.e., those with nr = 0) and π̂rake

r is known
to perform poorly for these cases. However, if n is large enough, π̂rake

r is equal to the non-parametric
maximum likelihood estimator of πr and is statistically efficient.

4. Iso-BLUE performs well in all cases when the sample size is not very small, especially in the case where
rankers are unequally effective.

5 Example

In this section, we analyze the tree height data from Platt et al. (1988) and Chen et al. (2006). This data
set contains the heights of 396 trees whose mean is 52.7 and variance is 3253.4. We treat the reported tree
height data as the true population and generate JPS samples with n = 6, 12, 18, and 24. We assume there
are two rankers, each of whom ranks a set of H = 3 units using noisy copies of the original observations.
For the first ranker, the noisy copy is made by adding an independent Gaussian random variable with mean
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ρ H n
Normal Lognormal

Equally Eff. Non-equally Eff. Equally Eff. Non-equally Eff.
I-M I-R I-B I-M I-R I-B I-M I-R I-B I-M I-R I-B

-0.5 2 10 1.30 1.32 1.20 1.21 1.23 1.14 1.20 1.02 1.21 1.15 0.98 1.16
30 1.34 1.34 1.30 1.23 1.26 1.22 1.20 1.17 1.24 1.16 1.13 1.18
60 1.38 1.43 1.35 1.23 1.31 1.24 1.19 1.21 1.21 1.17 1.21 1.19
150 1.37 1.42 1.35 1.24 1.34 1.27 1.21 1.26 1.20 1.17 1.23 1.17

4 10 1.65 1.49 1.30 1.39 1.29 1.17 1.42 0.94 1.27 1.34 0.99 1.20
30 1.91 1.89 1.80 1.53 1.61 1.52 1.50 1.30 1.49 1.37 1.28 1.38
60 1.92 1.98 1.85 1.55 1.75 1.58 1.43 1.38 1.44 1.38 1.46 1.39
150 1.93 2.07 1.89 1.54 1.84 1.63 1.49 1.58 1.48 1.38 1.53 1.41

10 10 1.59 – 1.17 1.28 – 1.05 1.62 – 1.21 1.37 – 1.15
30 2.49 2.31 1.91 1.75 1.76 1.55 1.86 1.26 1.56 1.60 1.22 1.42
60 2.83 2.82 2.56 1.87 2.13 1.88 1.95 1.55 1.84 1.69 1.64 1.65
150 2.90 3.25 2.81 1.95 2.59 2.17 2.02 2.11 1.98 1.72 2.04 1.80

0.0 2 10 1.27 1.29 1.18 1.18 1.20 1.13 1.20 1.07 1.24 1.12 0.95 1.15
30 1.32 1.31 1.28 1.21 1.22 1.20 1.18 1.16 1.22 1.13 1.11 1.17
60 1.33 1.34 1.31 1.22 1.26 1.23 1.18 1.17 1.20 1.14 1.14 1.15
150 1.36 1.40 1.34 1.23 1.30 1.26 1.19 1.22 1.19 1.15 1.18 1.16

4 10 1.55 1.38 1.30 1.33 1.20 1.17 1.37 0.92 1.28 1.28 0.99 1.18
30 1.79 1.63 1.71 1.47 1.44 1.48 1.42 1.20 1.43 1.33 1.16 1.36
60 1.84 1.81 1.79 1.47 1.57 1.53 1.42 1.34 1.43 1.34 1.32 1.37
150 1.85 1.89 1.82 1.44 1.56 1.53 1.44 1.45 1.43 1.35 1.42 1.38

10 10 1.51 – 1.14 1.24 – 1.04 1.59 – 1.24 1.37 – 1.15
30 2.31 1.97 1.87 1.63 1.44 1.53 1.70 1.20 1.51 1.53 1.18 1.40
60 2.48 2.20 2.29 1.78 1.82 1.90 1.82 1.43 1.78 1.61 1.42 1.60
150 2.63 2.67 2.57 1.82 2.08 2.05 1.85 1.75 1.85 1.65 1.75 1.75

0.5 2 10 1.25 1.27 1.19 1.16 1.20 1.13 1.16 1.05 1.22 1.11 0.96 1.17
30 1.32 1.31 1.28 1.20 1.20 1.19 1.18 1.15 1.23 1.14 1.11 1.19
60 1.33 1.33 1.29 1.21 1.25 1.23 1.15 1.14 1.17 1.14 1.16 1.16
150 1.33 1.34 1.32 1.22 1.29 1.26 1.18 1.19 1.18 1.14 1.16 1.15

4 10 1.51 1.35 1.28 1.32 1.23 1.19 1.32 1.02 1.27 1.24 0.96 1.19
30 1.72 1.58 1.66 1.44 1.39 1.46 1.39 1.16 1.42 1.32 1.14 1.35
60 1.78 1.73 1.73 1.44 1.49 1.50 1.40 1.33 1.42 1.31 1.29 1.36
150 1.79 1.81 1.77 1.47 1.60 1.58 1.42 1.41 1.41 1.33 1.39 1.38

10 10 1.48 – 1.13 1.23 – 1.07 1.61 – 1.25 1.36 – 1.15
30 2.20 1.81 1.82 1.60 1.41 1.53 1.67 1.14 1.50 1.49 1.15 1.42
60 2.36 2.11 2.23 1.69 1.69 1.82 1.77 1.40 1.74 1.58 1.39 1.62
150 2.48 2.44 2.44 1.76 1.96 2.00 1.81 1.71 1.82 1.59 1.65 1.72

Table 2: RE (w.r.t. SRS) of the isotonized estimators. The distributions of Y are normal and lognormal.
ρ = −0.5: negatively correlated ranking errors; ρ = 0: uncorrelated ranking errors; ρ = 0.5: positively
correlated ranking errors; Equally Eff: equally effective rankers; Non-equally Eff: non-equally effective
rankers; I-M: Iso-MSW; I-R: Iso-Raking; I-B: Iso-BLUE.

0 and variance 1821.9(= 0.56 × 3253.4) to each observation; for the second ranker, we add an independent
Gaussian noise with mean 0 and variance 9760.3(= 3 × 3253.4) to each observation. This is similar to the
5th senario in Table 1. For each setting, we generate 10, 000 replicate data sets, in each of which sampling is
conducted without replacement; and we apply the same six estimators as in the simulation study to estimate
the mean tree height. The empirical MSEs and REs (w.r.t. SRS) of the six estimators are reported in Table
3.

Table 3 shows that, again, the isotonized estimators perform better than their non-isotonized peers. Also,
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n Method MSE RE Mean s.d. n Method MSE RE Mean s.d.
6 SRS 521.4 1.00 52.5 22.8 18 SRS 171.5 1.00 52.6 13.1

MSW 460.2 1.13 51.3 21.4 MSW 134.4 1.28 52.3 11.6
Iso-MSW 438.0 1.19 51.3 20.9 Iso-MSW 130.8 1.31 52.3 11.4
Raking 562.2 0.93 53.3 23.7 Raking 164.9 1.04 53.1 12.8

Iso-Raking 506.5 1.03 53.5 22.5 Iso-Raking 150.2 1.14 53.1 12.2
BLUE 520.4 1.00 49.4 22.6 BLUE 145.4 1.18 50.8 11.9

Iso-BLUE 500.6 1.04 49.6 22.2 Iso-BLUE 139.4 1.23 50.9 11.7
12 SRS 251.7 1.00 52.2 15.9 24 SRS 128.9 1.00 52.7 11.4

MSW 207.6 1.21 51.7 14.4 MSW 99.0 1.30 52.4 9.9
Iso-MSW 199.9 1.26 51.8 14.1 Iso-MSW 96.6 1.33 52.4 9.8
Raking 284.0 0.89 52.7 16.9 Raking 110.8 1.16 52.8 10.5

Iso- Raking 242.9 1.04 52.8 15.6 Iso- Raking 102.7 1.25 52.9 10.1
BLUE 236.2 1.07 49.6 15.1 BLUE 104.7 1.23 51.1 10.1

Iso-BLUE 223.3 1.13 49.8 14.7 Iso-BLUE 101.2 1.27 51.2 9.9

Table 3: Results of the tree height data. In the table, "Mean" represents the average of 10,000 mean
estimates, and "s.d." represents their standard deviation.

we find that MSW and Iso-MSW perform better than the other two pairs. BLUE and Iso-BLUE do well
when the sample size is large. This is consistent with the results in the numerical study for non-equally
effective rankers. The distribution of tree height data is skewed to the right and has a heavy tail. Thus, its
distributional properties are close to that of exponential or lognormal distributions. In the simulation study,
if Y is generated from exponential or lognormal distribution, MSW and Iso-MSW often perform better than
the other estimators if the sample size is not large.

6 Discussions and conclusions

We have proposed a new set of estimators, which monotonize existing estimators using the matrix partial
order. The new estimators are numerically shown to perform better than their un-isotonized counterparts.
It is worth mentioning that the performance depends on the validity of the monotonicity assumption. When
the assumption barely holds or fails, the proposed isotonized estimation would have little or no help at all.
It is rare that the assumption is violated in theory (i.e., µ[r1] ≥ µ[r2] holds when r1 ≤ r2 in a component-wise
manner). After all, the rankers are supposed to order the units, and no matter how bad they could be,
the judgment order statistics are expected to resemble the true order statistics. As long as the rankers are
rational, the matrix partial ordering we impose is a reasonable and mild assumption.

We notice that small sample sizes often induce many empty strata; the number of empty strata becomes
large as the number of rankers increases. The Raking estimators frequently disregard empty strata and the
performance is relatively poor for small samples in comparison to the other two types of estimators; the MSW
and BLUE estimators are, in principle, based on marginal ranks and so are less affected by the presence of
empty strata. We have also considered the case of four rankers (m = 4). We observe that there are some
improvements by considering the monotonicity constraints, but they are not as significant as the cases of two
rankers. This is because the rank matrix has four dimensions and it is so sparse that the matrix partial order
is seldom violated, making the isotonized estimation almost identical to the corresponding un-isotonized one
in most simulated data. For future work, one may improve the performance of the Raking estimators by
estimating both πr and µ[r] through borrowing information from its neighboring strata.
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