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Abstract

We develop methods to compare multiple multivariate normally distributed samples

which may be correlated. The methods are new in the context that no assumption is

made about the correlations among the samples. Three types of null hypothesis are

considered: equality of mean vectors, homogeneity of covariance matrices, and equality

of both mean vectors and covariance matrices. We demonstrate that the likelihood ratio

test statistics have finite-sample distributions that are functions of two independent

Wishart variables and dependent on the covariance matrix of the combined multiple

populations. Asymptotic calculations show that the likelihood ratio test statistics

converge in distribution to central Chi-squared distributions under the null hypotheses

regardless how the populations are correlated. Following these theoretical findings, we

propose a resampling procedure for the implementation of the likelihood ratio tests in

which no restrictive assumption is imposed on the structures of the covariance matrices.

The empirical size and power of the test procedure are investigated for various sample
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sizes via simulations. Two examples are provided for illustration. The results show

good performance of the methods in terms of test validity and power.

Keywords: Correlated samples; Empirical rejection probability; Equality of mean vec-

tors; Homogeneity of covariance matrices; Multivariate analysis; Resampling.

1 Introduction

Multivariate data that consist of sets of measurements on a number of individuals or objects

are collected in many areas of application, and comparing population (or treatment) mean

vectors and/or covariance matrices is often of interest. In some cases it may not be realistic

to assume that the samples are independent; one obvious example is experimental situations

in which natural paired data are observed on the same set of subjects. For instance, in

a dental heath study on tooth size balance, measurements of tooth sizes on left side from

the central incisors and those on the right side may be correlated because the observations

were collected from the same group of patients. Another example is a microarray study

which consists of gene expression profiles at two different stages of cancer, benign tumor and

primary tumor. The two samples may be correlated due to the fact that both stages were

acquired from most cancer patients in the study. Moreover, in many instances, samples are

correlated due to various reasons other than an obvious “pairing” factor. For example, it

is common to see within-family correlation of observations in some educational psychology

studies. Problems that motivate this study of correlated samples arise in many applications

such as those in the areas of medicine, psychology, environmental science, and economics.

To outline the testing problems to be investigated, we suppose samples of the same

size n are drawn from t (> 1) multivariate normal populations each with p variables. Let

Yijv represent the measurement of the vth variable on the jth subject in sample i, i =

1, . . . , t (samples), j = 1, . . . , n (subjects), and v = 1, . . . , p (variables). The samples are not

necessarily independent from one another. For instance, part or all of the subjects can be the

same across samples. For the ith sample, the vectors Yij ≡ (Yij1, . . . , Yijp)
T for j = 1, . . . , n,
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are assumed to follow a p-variate normal distribution, N (µi,Σi), with population-specific

mean vector µi and covariance matrix Σi. We consider the following hypotheses.

(i) Testing equality of mean vectors, i.e,

H0 : µ1 = · · · = µt versus HA which does not so restrict µi’s;

(ii) Testing equality of covariance matrices, i.e.,

H0 : Σ1 = · · · = Σt versus HA which does not so restrict Σi’s;

(iii) Testing simultaneous equality of both mean vectors and covariance matrices, i.e.,

H0 : µ1 = · · · = µt and Σ1 = · · · = Σt versus HA which does not so restrict µi’s

and/or Σi’s.

Hypothesis tests about population means and covariance matrices for multivariate normal

data have received much attention in the literature. Most of these studies assume that the

samples are independent (among many others see, for example, Szatrowski, 1979; Perlman,

1980; Conover, Johnson and Johnson, 1981; Anderson, 2003, Chapters 8 and 10). Several au-

thors have considered the problems of comparing correlated samples. Harris (1985) proposed

methods for testing the equality of variances of correlated univariate normal populations, i.e.,

testing the null hypothesis (ii) when p = 1. Han (1968) and Choi and Wette (1972) studied

special cases of the testing problem (ii) for the case p = 1, namely, that some assumptions

are made on the correlation structure among the univariate normal populations.

In this article, we study the likelihood-ratio-type tests (LRTs) of aforementioned hy-

potheses (i)—(iii) for multivariate normal populations (i.e., p ≥ 1). Neither independence

assumption among populations nor assumption on the correlation structure among popula-

tions is imposed. Moreover, the covariance structure is not specified of any particular form

for a given population. The new aspect and challenge come from the dependence among

populations as well as the multivariate nature of data. We show that the finite-sample distri-

butions of the LRT statistics are of some complicated form. Furthermore, we prove that the

asymptotic distributions of the LRT statistics are central Chi-squared distributions under

the null hypotheses. Besides these properties, the LRT statistics are generally not invariant
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with respect to permutation transformations of the samples, and hence classical permuta-

tion technique is not applicable to the finite-sample null distributions. These considerations

lead us to propose a parametric bootstrap (or resampling) procedure via substituting sample

covariance matrices, which is easy to implement.

The rest of the article is organized as follows. In Section 2, we describe the LRTs

for the hypotheses under consideration. There, results on the finite-sample properties are

given together with results on the derivation of asymptotic distributions. The resampling

procedure is provided for computing the null distributions and conducting the tests. Section 3

contains simulation studies on the performances of the proposed test procedure under a

variety of null and alternative hypotheses as well as different sample sizes. In Section 4, we

apply the proposed methods to a clinical study on human tooth size and a microarray data

set.

2 Likelihood Ratio Test Statistics and Properties

2.1 LRT Statistics

Following the notations in Section 1, the p-variate vector of observations on the jth subject

in the ith sample is Yij = (Yij1, . . . , Yijp)
T, j = 1, . . . , n, and i = 1, . . . , t; and the ith

random sample Yi1, . . . ,Yin follows the p-variate normal distribution N (µi,Σi). Based on

this setting and combining the p-variate vectors of observations on the jth subjects from all t

samples, we let Y·j = (YT
1j, . . . ,Y

T
tj)

T, j = 1, . . . , n, which is assumed to be independent and

identically distributed from a multivariate normal distribution N (η,Ω). It is easily seen that

the mean vector is a (tp)-dimensional column vector η = (µT
1 , . . . , µT

t )T and the (tp)× (tp)

positive-definite covariance matrix Ω has diagonal p×p matrices equal to Σ1, . . . ,Σt. Notice

that dependence is allowed among samples. Furthermore, no assumption is made about the

correlation structure among the populations. Treating Y·1, . . . ,Y·n as a “new” sample, we
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can represent the complete data from all t individual samples by the n× (tp) data matrix

Y = (Y·1, . . . ,Y·n)T =




YT
11 YT

21 . . . YT
t1

YT
12 YT

22 . . . YT
t2

...
...

. . .
...

YT
1n YT

2n . . . YT
tn




.

The log-likelihood function is

`(η,Ω|Y) =
n∑

j=1

{
−tp

2
log(2π)− 1

2
log

∣∣Ω
∣∣− 1

2
(Y·j − η)TΩ−1(Y·j − η)

}
,

and the LRT statistic for testing H0 versus HA is defined as

LRTn = 2 sup
HA

`(η,Ω|Y)− 2 sup
H0

`(η,Ω|Y).

Large value of LRTn is in favor of HA. Some simple algebra shows that the LRT statistics

for testing the hypotheses (i)—(iii) are approximately proportional to

Mn = n log

(∣∣SSM

∣∣
∣∣SSA

∣∣

)
, Vn = n log

(∣∣SSV

∣∣
∣∣SSA

∣∣

)
, Wn = n log

(∣∣SSW

∣∣
∣∣SSA

∣∣

)
, (1)

respectively, where SSA is the sum of squares for the sample covariance matrix of the “new”

sample Y·1, . . . ,Y·n when no assumption is made about µi’s or Σi’s; SSM is the analogous

sum of squares under the assumption of equal mean vectors µ1 = · · · = µt (null hypothesis

(i)); SSV is the analogous sum of squares under the assumption of equal covariance matrices

Σ1 = · · · = Σt (null hypothesis (ii)); and SSW is the analogous sum of squares under the

assumption of both equal mean vectors and equal covariance matrices (null hypothesis (iii)).

One may prefer to use sample covariance matrices instead of these sums of squares; nothing

discussed here changes in any essential way and results remain the same.

First, we shall determine suitable expressions for SSA, SSM, SSV and SSW. When no

restriction is imposed on µi’s or Σi’s, the maximum likelihood estimator for E(Y) is n−1JnY,

where Jn denotes the n× n matrix with all entries equal to 1, and thus

SSA =
(
Y − n−1JnY

)T (
Y − n−1JnY

)
= YT

(
In − n−1Jn

)
Y,
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where In means the n × n identity matrix. Under the assumption µ1 = · · · = µt, one can

derive that the maximum likelihood estimator for E(Y) is n−1JnYA, where A = t−1Jt ⊗ Ip

with ⊗ as the notation for a Kronecker (or direct) product, and hence

SSM =
(
Y − n−1JnYA

)T (
Y − n−1JnYA

)

= YT
(
In − n−1Jn

)
Y + n−1(Itp −A)YTJnY(Itp −A).

Introduce the operator hhh(·) such that for any (tp) × (tp) matrix SS, hhh
(
SS

)
has t diagonal

p× p matrices that are identical and equal to the arithmetic average of the t diagonal p× p

matrices of SS, i.e., equal to t−1
∑t

k=1 SS [k,k] where SS[k,k] denotes the kth p × p diagonal

matrix of SS; and the rest components in hhh
(
SS

)
are the same as those in SS. Under the

assumption Σ1 = · · · = Σt, we let

SSV = hhh
(
SSA

)
.

Similarly, when assuming µ1 = · · · = µt and Σ1 = · · · = Σt, we express

SSW = hhh
(
SSM

)
.

One remark is that in (1), each of Vn and Wn has an additional random term that is

trace
{
SSA hhh (SSA)−1}− tp and trace

{
SSM hhh (SSM)−1}− tp, respectively. We ignore these

terms in the test statistics because they are negligible in comparison to the term remained

and they converge in probability to zero under the null hypotheses. Another remark is that

a sum of squares is not necessarily positive-definite and when this happens, the procedure

given by Bock and Petersen (1975) is used to construct an estimated covariance matrix that

is at least positive-semidefinite. Also, notice that under the null hypotheses, the probability

that SSA or SSM is singular decreases to 0 as n →∞.

2.2 Properties of LRT Statistics

We now investigate the finite-sample and asymptotic properties of the LRT statistics by

demonstrating two theorems. Note that SSA, SSM, SSV, and SSW are all invariant with

6



respect to η under the equal mean vectors assumption µ1 = · · · = µt. Consequently, without

loss of generality, we assume η = 0 in the remainder of this section.

The following theorem characterizes the finite-sample distributions of the LRT statistics

Mn, Vn and Wn. The theorem involves Wishart distributions. A positive definite q × q

symmetric matrix of random variables, denoted by X is said to have the Wishart distribution

with parameters Ψ, n, and q, if the probability density function of X is

f(x) =

∣∣x
∣∣(n−q−1)/2

exp
{−tr(xΨ−1)

/
2
}

2nq/2πq(q−1)/4
∣∣x

∣∣n/2 ∏q
k=1 Γ {(n + 1− k)/2}

, n ≥ q,

where Ψ is a fixed positive definite matrix of size q × q, and Γ(·) stands for the gamma

function. In short, we write X ∼ Wishart
(
Ψ, n, q

)
.

Theorem 1. The LRT statistic Mn for testing the equality of mean vectors in (i) is dis-

tributed as

n
(
log

∣∣Cn + D
∣∣− log

∣∣Cn

∣∣) ,

where Cn and D are independently distributed as Wishart (Itp, n− 1, tp) and Wishart
{
Ω−1/2(Itp−

A)TΩ(Itp−A)Ω−1/2, 1, tp
}
, respectively. The LRT statistic Vn for testing the equality of co-

variance matrices in (ii) is distributed as

n
{

log
∣∣Ω−1/2hhh

(
Ω1/2CnΩ

1/2
)
Ω−1/2

∣∣− log
∣∣Cn

∣∣
}

.

The LRT statistic Wn for testing the simultaneous equality of mean vectors and equality of

covariance matrices in (iii) is distributed as

n
[
log

∣∣Ω−1/2{hhh(
Ω1/2CnΩ

1/2
)

+ hhh
(
Ω1/2DΩ1/2

)}Ω−1/2
∣∣− log

∣∣Cn

∣∣
]
,

where hhh(·) is the operator defined in Section 2.1. hhh
(
Ω1/2CnΩ

1/2
)

and hhh
(
Ω1/2DΩ1/2

)
are

independent from each other followed by the fact that Cn and D are independent.

Proof. See the Appendix.

It is straightforward to see from Theorem 1 that the only case the LRT statistics are

invariant with respect to Ω is when Σ1 = · · · = Σt ≡ Σ and Ω = It⊗Σ; that is, when the t
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populations are uncorrelated and share homogeneous covariance matrix. The next theorem

studies the asymptotic null distributions of the LRT statistics.

Theorem 2. Let Z be a (tp)-variate standard normal random variable.

(a) Under the hypothesis (i) of equal mean vectors, as n →∞, Mn converges in distribution

to

M∞ = ZΩ1/2 (Itp −A)Ω−1 (Itp −A)Ω1/2ZT, (2)

which has the Chi-squared distribution with (t− 1)p degrees of freedom (d.f.).

(b) Under the hypothesis (ii) of homogenous covariance matrices, the asymptotic distribu-

tion of Vn as n →∞ is the Chi-squared distribution with (t− 1)p(p + 1)/2 d.f.

(c) Under the hypothesis (iii) of both equal mean vectors and equal covariance matrices, as

n →∞, Wn converges in distribution to the Chi-squared distribution with (t−1)p(p+

3)/2 d.f.

Proof. See the Appendix.

Theorems 1 points out that the finite-sample distributions of the LRT statistics depend

on the true covariance matrix Ω unless Σ1 = · · · = Σt ≡ Σ and Ω = It ⊗ Σ. However,

Theorem 2 indicates that in asymptotic, the test statistics have the Chi-squared distributions,

in spite of the correlations among the populations.

2.3 Test Procedure

In addition to the theoretical findings in Section 2.2, the LRT statistics are not invariant with

respect to permutation transformations of the samples that leave the null hypothesis invari-

ant. Consequently a permutation method (e.g., Box and Anderson, 1955) is not applicable

for null distribution computation. The characteristic of the LRT statistics in Theorem 1

motivates us to apply a bootstrap method to estimate the finite-sample null distributions

without making any assumptions about the correlations among samples. In particular, to

implement the LRT for testing the null hypothesis (i), the following procedure is proposed.
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(1) Use the observed samples to formulate the n × (tp) data matrix Y as described in

Section 2.1. Compute the sums of squares SSA and SSM and then calculate the value

of the LRT statistic Mn, labeled by Mobs
n to indicate that this is the observed test

statistic.

(2) Simulate K random samples of size n from the (tp)-variate normal distribution

N (0, SSM). For each simulated random sample, compute the LRT statistic Mn, la-

beled by M
(k)
n for the kth sample, k = 1, . . . , K.

(3) Count the number of M
(k)
n ’s that are greater than and equal to Mobs

n . The p-value of the

test is then estimated by this number divided by the total number of simulated random

samples, i.e.,
∑K

k=1 I(M
(k)
n ≥ Mobs

n )/K where I(·) stands for the indicator function.

Note that the empirical distribution of M
(1)
n , . . . , M

(K)
n is the bootstrap estimate of the null

distribution of the LRT statistic Mn. Because H0 is rejected for large Mn, the bootstrap

level α critical value is the (1 − α)th percentile of the M
(k)
n empirical distribution and the

bootstrap p-value is the proportion of the M
(k)
n that are at least as large as Mobs

n , the value

of Mn based on the original data.

The algorithm for implementation of the LRT for testing the null hypothesis (ii) is vir-

tually the same as the above steps except that SSV is in place of SSM and Vn is in place

of Mn. Similarly, the implementation of the LRT for testing the null hypothesis (iii) is the

same except that SSW and Wn are used accordingly. The larger the number of simulated

random samples K is, the better approximation for the null distribution. In practice, we

find K ≥ 5000 is reliable and adequate.

The proposed resampling procedure is basically a parametric bootstrap. An alternative

would be the use of a nonparametric bootstrap to benefit from its robustness against distri-

butional assumptions. That is, instead of resampling from a multivariate normal distribution

in step (2), one forms random bootstrap samples through drawing random subjects from the

centered original data set (the data are centered at the null hypothesis). However, there are

two main issues that make such alternative less favorable. First, although one can easily cen-
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ter the original data at the average of the sample mean vectors for hypothesis (i), it is fairly

difficult to center the original data at the null hypotheses (ii) and (iii) without affecting the

inter-population correlations. Secondly, a simulation we report in Section 3.3 exposes that

the nonparametric bootstrap has weaker power for testing hypothesis (i) than the proposed

parametric bootstrap, especially when sample sizes are not large.

3 Simulation

To evaluate the performances of Mn, Vn and Wn and the proposed finite-sample implementa-

tion procedure, we carried out Monte Carlo studies on the size (i.e., type I error probability)

and power (i.e., one minus type II error probability) of the tests. In addition, we also provide

a simulation to compare the proposed parametric bootstrap procedure with its nonparamet-

ric bootstrap counterpart.

In particular, we considered t = 2 populations and let Y1j = (Y1j1, . . . , Y1jp)
T, j =

1, . . . , n, be the sample of size n from N (µ1,Σ1) distribution, and Y2j = (Y2j1, . . . , Y2jp)
T,

j = 1, . . . , n, be the other sample of size n that comes from N (µ2,Σ2) distribution. The

samples were generated according to Y·j = (YT
1j,Y

T
2j)

T ∼ N (η,Ω), j = 1, . . . , n, where

η = (µT
1 ,µT

2 )T with µ1 = µ11p and µ2 = µ21p for 1p denoting the p×1 column vector of 1’s;

and Ω =


 Σ1 Σ12

Σ21 Σ2


 with Σ1 = σ2

1 {(1− ρ1)Ip + ρ1Jp}, Σ2 = σ2
2 {(1− ρ2)Ip + ρ2Jp},

Σ12 = ρ12Jp and Σ21 = ρ21Jp. That is, µ1 = µ2 if µ1 = µ2. Both Σ1 and Σ2 have compound

symmetry structures, and their within-population correlation is controlled by ρ1 and ρ2,

respectively. Also, notice that Σ1 = Σ2 if σ2
1 = σ2

2 and ρ1 = ρ2. The dependency between

the two samples is governed by the parameters ρ12 and ρ21; the samples are uncorrelated if

ρ12 = ρ21 = 0.

3.1 Size of the Tests

Simulated samples were generated under the null hypotheses in order to evaluate the size

of the LRTs implemented using the proposed test procedure. Meanwhile, we compare their
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type I error probabilities with those of the asymptotic Chi-squared tests. The simulation

presented in Table 1 was set up according to p = 5, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, and

ρ1 = ρ2 = 0.5. That is the null conditions µ1 = µ2 and Σ1 = Σ2 are simultaneously satisfied

for all three tests. The performances of the LRTs were investigated for different sample

sizes. We let the two populations to be independent by setting ρ12 = ρ21 = 0 or correlated

by setting ρ12 = ρ21 = 0.3. 500 Monte Carlo data sets were simulated for each setting

with a choice of sample size n (= 25, 50, 100, or 500) and a choice of between-population

correlation ρ12 = ρ21 (= 0 or 0.3). For each data set, the LRT statistics Mn, Vn, Wn, and

their estimated p-values were computed using the procedure described in Section 2.3. The

asymptotic Chi-squared test for mean equivalence is χ2
5, the asymptotic Chi-squared test for

covariance equivalence is χ2
15, and the asymptotic Chi-squared test for both mean equivalence

and covariance equivalence is χ2
20. Whether a null hypothesis was rejected or not at nominal

significance level α = 0.05 for a data set was recorded by checking if a p-value is less than

0.05. The proportion of rejections from 500 replications was calculated for each test. Note

that when the power is near 0.05, the estimated power (rejection rate) from 500 Monte Carlo

replications has an approximate standard deviation of 0.0098.

From the results in Table 1, we can see that regardless of the sample size and the between-

population correlation, the empirical type I error probabilities of Mn, Vn, and Wn imple-

mented using the proposed test procedure are close to or attain the nominal α = 0.05 level.

However, when the sample size n is small, all Chi-squared tests are fairly liberal with empir-

ical type I error probabilities well above 0.05, no matter the populations are independent or

correlated. The proposed test procedure and the Chi-squared tests provide almost identical

type I error probabilities when n is large enough.

We further investigated how the test Mn performs when its null hypothesis of equal mean

vectors is met for the two correlated populations by setting µ1 = µ2 = 0 and ρ12 = ρ21 = 0.3,

but their covariance matrices differ due to the change of σ2
2 (= 1, 1.5, or 2) and the change

of ρ2 (= 0.5 or 0). The data generating scheme was the same as the preceding simulation

study, and results are displayed in Table 2. In all cases, Mn implemented using the proposed
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procedure demonstrates good performance through achieving approximately valid nominal

α = 0.05 level and is not influenced by the heterogeneity of the covariance matrices, while

the Chi-squared test shows degradation of performance which worsens when the within-

population correlations are different (ρ1 6= ρ2) and remains quite liberal even for large sample

sizes (e.g., n = 500), although as expected the situation becomes better when n increases.

We obtained similar results for Vn and the corresponding Chi-squared test when the null

hypothesis of equal covariance matrices is met for the two populations but their mean vectors

differ. Moreover, similar behaviors of these tests were observed when the two populations

are uncorrelated (ρ12 = ρ21 = 0). Overall, the proposed test procedure offers assurance of

credible estimation of type I error probability. The asymptotic Chi-squared tests are valid

only if n is very large. These observations are consistent with our theory.

3.2 Power of the Tests

We carried out simulations to detect a variety of alternative hypotheses using the proposed

test procedure: difference between mean vectors only, or between covariance matrices only,

or both. In the simulation results reported in Table 3, the parameter configurations are

p = 5, µ1 = 0, σ2
1 = 1, ρ12 = ρ21 = 0.3; that is, the two normal populations are correlated.

We vary the values of µ2, σ2
2 to create various null and alternative situations and sample

size n is changed as well. We also let the within-population correlations to be the same

(ρ1 = ρ2 = 0.5) or different (ρ1 = 0.5, ρ2 = 0). For each setting with a choice of µ2

(= 0, 0.5, or 1), a choice of σ2
2 (= 1, 1.5, or 2), a choice of ρ2 (= 0.5, or 0), and a choice of

n (= 25, 50, 100, or 500), 500 Monte Carlo data sets were simulated using the same scheme

as the preceding simulations.

Table 3 displays the empirical rejection probabilities (the number of rejections divided

by the number of Monte Carlo data sets). Results show that Mn, Vn and Wn are powerful

for detecting mean vector inequality, covariance matrix inequality, and simultaneous mean

vector and covariance matrix inequalities, respectively. As expected, the larger difference

between population mean vectors, the more powerful Mn becomes; the greater difference
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between population covariance matrices, the more powerful Vn is; and the more difference

between population mean vectors and/or between variance matrices, the more power Wn

improves. This indicates the power functions for these LRTs are monotone since their power

increases as the distance between the alternative hypothesis and the null hypothesis increases.

The power of any of the three LRTs increases with sample size n; and they are substantially

powerful when n is large, say n ≥ 100. Moreover, from the lower part of Table 3, Vn and

Wn are powerful for detecting the difference between within-population correlations (ρ1 and

ρ2) regardless whether the variance components (σ2
1 and σ2

2) differ or not.

When the two populations have the same covariance matrix (i.e., when σ2
1 = σ2

2 and

ρ1 = ρ2), Mn is slightly more likely to detect mean vector difference than Wn. However,

when the population variances are different, Wn exhibits better power than Mn. Likewise,

when there is no difference between the population mean vectors (i.e., when µ1 = µ2), Vn

is slightly more powerful than Wn to detect the difference between population covariance

matrices; while Wn is more powerful than Vn when the difference between population mean

vectors is present. Moreover, when the two population variances differ more sizeably, the

power of Mn for detecting mean equivalence declines mildly, but this is the price one has to

pay for Mn if the two populations are heterogenous. This loss of power is less pronounced

and Mn achieves good power similar to Wn when the presence of unequal population mean

vectors is large enough, e.g., when µ2 − µ1 = 1.

The empirical power of the asymptotic Chi-squared tests are quite liberal with larger

rejection rates (not reported here), similar to their behaviors seen in Section 3.1. Again, the

simulation results coincide with our theoretical findings.

3.3 Comparison to Nonparametric Bootstrap

As discussed in Section 2.3, a nonparametric bootstrap approach can be used to implement

Mn, in place of the proposed parametric bootstrap procedure. To compare the performances

of these two procedures, we conducted a simulation using the same set up as in Section 3.2 and

Table 4 gives the results. When sample sizes are small, the proposed parametric bootstrap
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procedure provides a more powerful test for detecting mean vector inequalities. The two pro-

cedures exhibit similar performances when sample sizes are sufficiently large. Therefore, we

recommend the parametric bootstrap procedure for the hypothesis tests under consideration.

4 Applications

To illustrate the proposed methods in practice, we applied them to two data examples.

4.1 Tooth Size Study

A numerical example is taken from a dental health study conducted during 1999—2002 in

Seoul, Korea, which was part of a standard occlusion study that has been undergoing since

1997 (Kim et al., 2005; Lee et al., 2007). Human adults have 28 permanent teeth (central

incisors to second molars), or up to 32 including the third molars (or wisdom teeth). The

permanent tooth sizes (mesiodistal diameters of teeth) of patients were measured using dig-

ital vernier calipers. The data set contains mandibular (lower jaw) teeth size measurements

obtained from 115 young female adults who had natural normal occlusion and whose age

range was between 17 and 24 years old with an average age of 20 years. Tooth size im-

balances can complicate harmonious intercuspation and often justify extraction treatment

modalities. Assessing whether tooth size profile is identical for the left and right sides around

central incisors would be helpful for understanding the biological phenomena of teeth. It

can provide important insight into normative data of human tooth size, diagnostic criteria

for malocclusion, and dental treatment planning such as orthodontic correction and rapid

palatal expansion in these women (Uysal et al., 2005). To address this issue, we apply the

proposed tests to the data set.

Let YLj = (YLj1, . . . , YLj7)
T and YRj = (YRj1, . . . , YRj7)

T denote the tooth size mea-

surements on the left and those on the right from central incisors to second molars in the

mandible of the jth woman, respectively, j = 1, . . . , 115. It has been previously reported that

the tooth sizes have a multivariate normal distribution (Wang et al., 2006) and normality
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checking performed on the data agreed with this observation, thus we assume

(YT
Lj,Y

T
Rj)

T ∼ N
(

 µL

µR


 ,


 ΣL ΣLR

ΣRL ΣR




)
.

Because YLj and YRj consisted of observations from the same woman, it is very likely

that they are correlated, i.e., ΣLR and ΣRL have non-zero components. The two samples

that consist measurements on the left side and those on the right side, respectively, can be

regarded as coming from two correlated 7-variate normal distributions. To test the sameness

of tooth size profiles on the two sides, we applied the proposed methods to analyze the data.

Data analysis indicates Mn = 11.8571 with an estimated p-value = 0.2305, which suggests

µL = µR; Vn = 73.3759 with an estimated p-value = 0.0000, which indicates ΣL 6= ΣR; and

Wn = 84.7504 with estimated p-value = 0.0000, complementing the result of Vn.

We also conducted a simulation study based on the design of tooth size data set for further

checking the validity of the analysis results. 500 independent Monte Carlo random samples

were simulated; each data set (YT
Lj,Y

T
Rj)

T, j = 1, . . . , 115, were generated from 14-variate

normal distribution with mean and covariance matrix set equal to the overall sample mean

and sample covariance matrix of the tooth size data set, respectively. The three proposed

LRT statistics and their estimated p-values were computed. Results show that, at nominal

significance level 0.05, the empirical rejection probability of Mn for detecting mean vector

inequality is 0.02, the empirical power of Vn for detecting difference between covariance

matrices is 0.56, and the empirical power of Wn for detecting inequality of mean vectors

and/or covariance matrices is 0.54. These simulation results are consistent with the data

analysis results; both data analysis and simulation suggest equal mean vectors but unequal

covariance matrices. Therefore, we conclude that the mean tooth size profiles on the two

sides are the same, but the dispersion of tooth size differs between the left and right sides in

the mandible of these women.

The asymptotic Chi-squared tests suggest similar conclusions, but with more significant

p-values 0.1054, 0.0000, and 0.0000 for testing the hypotheses (i)—(iii), respectively. This

is not surprising because n = 115 is relatively large, although the results obtained using the
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proposed methods are more reliable.

4.2 Microarray Study

Our second example contains microarray data from a study of head and neck squamous cell

carcinoma (HNSCC) (Kuriakose et al., 2004; Irizarry et al., 2003), which is composed of gene

expression profiles at two stages of the cancer, benign tumor and primary tumor. For each

stage, the sample consists of 16 measurements of a gene set containing four co-expressed

genes (named 32242 at, 38625 g at, 36334 at, and AFFX-HSAC07/X00351 M at); and 10

patients were involved in both samples (stages). These four genes are known to scientists

that they are differentially co-expressed. We now further investigate whether the differential

co-expressions of the gene set are due to mean profile difference, or heterogeneous covariance

matrices, or both.

Let YNj = (YNj1, . . . , YNj4)
T, j = 1, . . . , 16, denote the gene expression profiles of

the four genes of normal tissue from the jth patient in the benign tumor stage, and

YTj = (YTj1, . . . , YTj4)
T, j = 1, . . . , 16, be those of the tumor tissue from the jth patient

in the primary tumor stage. Since the measurements are continuous, we use the common

assumptions YNj ∼ N (µN,ΣN) and YTj ∼ N (µT,ΣT). Taking into account that the two

samples are only partially correlated, we apply the LRTs using a slightly modified test pro-

cedure. That is, we modify only the calculation of SSA and SSM in the procedure. In

particular, the ith diagonal p× p (here, p = 4) matrix of SSA is the sum of squares obtained

using all the observations in the ith sample. The (i, i′)th off-diagonal p× p matrix of SSA is

the off-diagonal p× p matrix of the sum of squares obtained using the observations that are

correlated in both ith and i′ th samples. SSM is computed in a similar way but after all the

samples are centered at the average of the individual sample mean vectors.

The analysis results show Mn = 44.8895 with an estimated p-value = 0.0004, which

suggests µN 6= µT; Vn = 23.5296 with an estimated p-value = 0.08532, which conveys

ΣN ≈ ΣT; and Wn = 62.6172 with estimated p-value = 0.0033, in agreement with the result

of Mn. Therefore, we may conclude that the differential co-expressions of the four genes are
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mainly contributed by the mean vector difference between the two stages of the cancer.

In contrast, the asymptotic Chi-squared tests have p-values that are all highly significant:

0.0000, 0.0090, and 0.0000 for testing the hypotheses (i)—(iii), respectively. Such significant

results are likely to be caused by the very liberal behaviors of the Chi-squared tests for finite

samples, thus their credibility is questionable for these small samples.

5 Discussion

We focused on correlated multiple multivariate samples and required no assumption on how

the samples are correlated. We presented likelihood ratio tests for equality of mean vectors,

equality of covariance matrices, and simultaneous equality of mean vectors and covariance

matrices of the populations. Derivation of the finite-sample distributions of the LRT statis-

tics shows that these distributions depend essentially on the true overall covariance matrix Ω,

whose diagonal square matrices are the population-specific covariance matrices and rest ele-

ments represent the covariances among populations. Another finding is that the asymptotic

null distributions are Chi-squared distributions regardless how the populations are correlated.

A resampling procedure is proposed to numerically estimate the null distributions for finite

samples. The test statistics are easy to calculate and the implementation of the test pro-

cedure is straightforward. Simulation studies demonstrate that, under the null hypotheses,

the proposed tests approximate valid nominal level, unlike the asymptotic Chi-squared tests

which may provide misleading type I error probabilities; meanwhile for a variety of alter-

native hypotheses, the tests demonstrate desired performance attaining appreciable power.

The application to the dental data and the microarray data further illustrates the usefulness

of adapting all three LRTs for data analysis so that comprehensive and credible conclusions

can be drawn. These features provide a strong case for the use of the proposed methods.

In theory the proposed methods can be applied to any number of multiple samples that

are correlated and multivariate normally distributed. However, when the sample sizes and

multivariate dimension are significantly large, computation will be a nontrivial issue and

new methods may be needed; this is included in our future work. The proposed approach
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assumes multivariate normality, which is reasonable for many data in practice, perhaps

on a transformed scale, but one should take care to check this assumption. In practice,

multivariate samples may be correlated due to various factors. We feel that the proposed

methods can be recommended for data analysis when the normality assumption looks realistic

and correlations among samples is evident or suspicious.

It is well known that most likelihood ratio tests based on the limit Chi-squared ap-

proximation have large rejection probabilities. A Bartlett correction (Bartlett, 1937) is a

modification applied to likelihood ratio statistics that may improve the Chi-squared null dis-

tributions to order O(n−1) from the original order O(1); refer to Carbari-Neto and Cordeiro

(1996) and references therein for more details. The extension of the Bartlett correction to

the correlated multivariate samples we consider in this article would be involving, and more-

over, the concern for the small-sample performances of the modified Chi-squared tests may

still remain. For example, Table 2 shows that the Chi-squared test for mean vector equality

easily rejects the null hypothesis even for fairly large samples, especially when the samples

have heterogeneous covariance matrices and are correlated. Thus for such kinds of situations,

we conjecture that there would be an improvement over the usual Chi-squared tests with a

Bartlett correction, but the proposed methods always provide reliable results no matter the

samples are large or small.
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Appendix

Proof of Theorem 1

We start with the distributions of sums of squares matrixes.
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First, we show Ω−1/2YT
{
In−(1/n)Jn

}
YΩ−1/2 follows Wishart

(
Itp, n−1, tp

)
distribution.

The matrix
{
In− (1/n)Jn

}
is an idempotent matrix with rank equal to n−1. Thus the sum

of squares SSA = YT
{
In−(1/n)Jn

}
Y has Wishart

(
Ω, n−1, tp

)
distribution. Here, Ω−1/2 is

the symmetric square root decomposition matrix of Ω−1 such that Ω−1 = Ω−1/2 ·Ω−1/2. The

distribution of Ω−1/2YT
{
In−(1/n)Jn

}
YΩ−1/2 is hence obtained to be Wishart

(
Itp, n−1, tp

)

based on a property of Wishart distributions.

Secondly, we show (1/n)Ω−1/2(Itp − A)YTJnY(Itp − A)Ω−1/2 has the distribution of

Wishart
(
Ω−1/2(Itp−A)TΩ(Itp−A)Ω−1/2, 1, tp

)
. The matrix (1/n)Jn is an idempotent matrix

with rank equal to 1. Thus the statistic (1/n)YTJnY has Wishart
(
Ω, 1, tp

)
distribution.

The statistic SSM−SSA = (1/n)(Itp−A)YTJnY(Itp−A) has the Wishart distribution with

parameters (Itp−A)Ω(Itp−A), 1, and tp. Hence, (1/n)Ω−1/2(Itp−A)YTJnY(Itp−A)Ω−1/2

has the Wishart
(
Ω−1/2(Itp−A)TΩ(Itp−A)Ω−1/2, 1, tp

)
distribution based on a property of

Wishart distributions.

Finally, YT
{
In−(1/n)Jn

}
Y and (1/n)(Itp−A)YTJnY(Itp−A) are independent to each

other because
{
In − (1/n)Jn

}
Jn = 0.

Now we derive the distribution of the LRT statistics. First,

Mn = n log

(∣∣SSM

∣∣
∣∣SSA

∣∣

)

= n log

(∣∣YT
{
In − (1/n)Jn

}
Y + (1/n)(Itp −A)YTJnY(Itp −A)

∣∣
∣∣YT

(
In − (1/n)Jn

)
Y

∣∣

)

= n log

(∣∣Ω−1/2YT
{
In − (1/n)Jn

}
YΩ−1/2 + (1/n)Ω−1/2(Itp −A)YTJnY(Itp −A)Ω−1/2

∣∣
∣∣Ω−1/2YT

{
In − (1/n)Jn

}
YΩ−1/2

∣∣

)
,

Using the above characterizations of the sum of squares SSA and SSM, we have that Mn is

distributed as

n
(

log
∣∣Cn + D

∣∣− log
∣∣Cn

∣∣
)
,

where Cn and D are independent Wishart variables, Cn ∼ Wishart
(
Itp, n − 1, tp

)
, and

D ∼ Wishart
(
Ω−1/2(Itp −A)TΩ(Itp −A)Ω−1/2, 1, tp

)
.

Alternatively, SSA can be easily seen to be distributed as Ω1/2CnΩ
1/2. Hence, SSV =
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hhh
(
SSA

)
is distributed as hhh

(
Ω1/2CnΩ

1/2
)
. Therefore, Vn is distributed as

n
(
log

∣∣Ω−1/2hhh
(
Ω1/2CnΩ

1/2
)
Ω−1/2

∣∣− log
∣∣Cn

∣∣
)

.

Similarly, SSM can be easily seen to be distributed as Ω1/2(Cn + D)Ω1/2. Hence,

SSW = hhh
(
SSM

)
is distributed as hhh

(
Ω1/2(Cn + D)Ω1/2

)
= hhh

(
Ω1/2CnΩ

1/2
)

+hhh
(
Ω1/2DΩ1/2

)
.

Therefore, Wn is distributed as

n
{

log
∣∣Ω−1/2

(
hhh
(
Ω1/2CnΩ

1/2
)

+ hhh
(
Ω1/2DΩ1/2

))
Ω−1/2

∣∣− log
∣∣Cn

∣∣
}

.

Proof of Theorem 2

We have introduced function hhh to define the statistics Vn and Wn. Under the null hypothesis

(ii) and (iii) in the Introduction, (1/n)SSA converges to Ω in probability. Thus, the proba-

bility that SSA is singular decreases to 0. Because of this, we assume SSA is non-singular

for simplicity.

Proof for Mn

We first compute the asymptotic distribution of Mn. We have

Mn = −n log

(∣∣SSA

∣∣
∣∣SSM

∣∣

)

= −n log

∣∣∣SSA

∣∣∣
∣∣∣SSA + (Itp −A)Ω1/2

( ∑
i Z

T
i

/√
n
)( ∑

i Zi

/√
n
)
Ω1/2 (Itp −A)

∣∣∣

= −n log
1∣∣∣Itp + SS−1

A (Itp −A)Ω1/2
( ∑

i Z
T
i

/√
n
)( ∑

i Zi

/√
n
)
Ω1/2 (Itp −A)

∣∣∣
= n log

∣∣∣Itp + SS−1
A (Itp −A)Ω1/2

( ∑
i

ZT
i

/√
n
)(∑

i

Zi

/√
n
)
Ω1/2 (Itp −A)

∣∣∣. (3)

Note that SSA is a consistent estimate of nΩ, and thus, for sufficiently large n, the

equation (3) can be approximated as

n log

∣∣∣∣Itp +
(
Ω−1

/
n
)
(Itp −A)Ω1/2

( ∑
i

ZT
i

/√
n
)( ∑

i

Zi

/√
n
)
Ω1/2 (Itp −A)

∣∣∣∣, (4)
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which is equivalent to

log

∣∣∣∣1 +
( ∑

i

Zi

/√
n
)
Ω1/2 (Itp −A)Ω−1 (Itp −A)Ω1/2

( ∑
i

ZT
i

/√
n
)∣∣∣∣ (5)

by Proposition 1.35 in Eaton (1983). The equation (5) can be approximated by, for suffi-

ciently large n,

ZΩ1/2 (Itp −A)Ω−1 (Itp −A)Ω1/2ZT.

Therefore, Mn has the asymptotic distribution of M∞ = ZTQZ, where Z is from the

(tp)-variate standard normal distribution and Q = Ω1/2
(
Itp −A

)
Ω−1

(
Itp −A

)
Ω1/2.

Now we show that the matrix Q is idempotent, and, thus, the M∞ has the Chi-squared

distribution.

Lemma 1.

R ≡ (
Itp −A

)
Ω

(
Itp −A

)
Ω−1 =

(
Itp −A

)
. (6)

Proof. We let

Ω =




Ω11 Ω12 · · · Ω1t

Ω21 Ω22 · · · Ω2t

...
...

...
...

Ωt1 Ωt2 · · · Ωtt




and Ω−1 =




Ω11 Ω12 · · · Ω1t

Ω21 Ω22 · · · Ω2t

...
...

...
...

Ωt1 Ωt2 · · · Ωtt




.

Since ΩΩ−1 = Ω−1Ω = Itp, we have

∑

k

ΩikΩ
kj = δijIp

∑

k

ΩikΩkj = δijIp.

Simple algebra shows that

AΩ =
(
1
/
t
)
Jt ⊗ Ip Ω

=
(
1
/
t
)




∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt

∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt

...
...

...
...

∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt




23



and

AΩ−1 =
(
1
/
t
)
Jt ⊗ Ip Ω

=
(
1
/
t
)




∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt

∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt

...
...

...
...

∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt




.

Finally, AΩAΩ−1 is the product of the above two matrices which is

(
1
/
t
)2




∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt

∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt

...
...

...
...

∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt







∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt

∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt

...
...

...
...

∑
k Ωk1

∑
k Ωk2 · · · ∑

k Ωkt




=
(
1
/
t
)2




B11 B12 · · · B1t

B21 B22 · · · B2t

...
...

...
...

Bt1 Bt2 · · · Btt




, (7)

where, for every i, j = 1, 2, . . . , t,

Bij =
∑

l

Ωlj
{ ∑

k

Ωk1 +
∑

k

Ωk2 + · · ·+
∑

k

Ωkt

}

= t Ip

Thus, AΩAΩ−1 =
(
1
/
t
)
Jt ⊗ Ip = A, and

R =
(
Itp −A

)
Ω

(
Itp −A

)
Ω−1

= Itp −A−A + AΩAΩ−1

= Itp −A−A + A

= Itp −A.
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We then show that Q2 = Q.

Q2 = Ω1/2
(
Itp −A

)
Ω−1

(
Itp −A

)
Ω

(
Itp −A

)
Ω−1

(
Itp −A

)
Ω1/2

= Ω1/2
(
Itp −A

)
Ω−1R

(
Itp −A

)
Ω1/2

= Ω1/2
(
Itp −A

)
Ω−1

(
Itp −A

)
Ω1/2 = Q,

because

R
(
Itp −A

)
=

(
Itp −A

)(
Itp −A

)
=

(
Itp −A

)
.

Proof for Vn

We now compute the asymptotic distribution of Vn.

Vn = −n
(

log
∣∣SSA

∣∣− log
∣∣hhh(

SSA

)∣∣
)

= −n
{

log
∣∣SSA

∣∣− log
∣∣SSA +

(
hhh
(
SSA

)− SSA

)∣∣
}

≈ n log
∣∣∣Itp +

(
1
/
n
)
Ω−1

(
hhh
(
SSA

)− SSA

)∣∣∣ (8)

≈ trace

{
Ω−1

(
hhh
(
SSA

)− SSA

)}

+
1

2n
trace

{
Ω−1

(
hhh
(
SSA

)− SSA

)
Ω−1

(
hhh
(
SSA

)− SSA

)}
+ op(1). (9)

Here, the approximation (8) is from, for sufficiently large n, SSA ≈ nΩ, and (8) is from the

results of Martin (1993) that is

log
∣∣∣Itp + A

∣∣∣ =
∞∑

j=1

trace
(
Aj

)/
j.

As shown in the proof of Mn,

SSA =
n∑

i=1

(
Ω1/2ZiZ

T
i Ω1/2

)
− 1

n

( n∑
i=1

Ω1/2Zi

)( n∑
i=1

ZT
i Ω1/2

)
,

where Zis are independent standard (tp)-variate normal random variables. Thus,

hhh
(
SSA

)− SSA ≈ hhh
( n∑

i=1

Ω1/2ZiZ
T
i Ω1/2

)
−

n∑
i=1

(
Ω1/2ZiZ

T
i Ω1/2

)
+ Op

(
1
)
.

25



Since the first term in (9) is equal to 0,

Vn ≈ 1

2
trace

{
Ω−1

(
hhh
( n∑

i=1

Ω1/2ZiZ
T
i Ω1/2

)
−

n∑
i=1

Ω1/2ZiZ
T
i Ω1/2

)

Ω−1

(
hhh
( n∑

i=1

Ω1/2ZiZ
T
i Ω1/2

)
−

n∑
i=1

Ω1/2ZiZ
T
i Ω1/2

)}
+ op

(
1
)
. (10)

We use the following lemma without proof.

Lemma 2. Under the null hypothesis, that is Ω11 = Ω22 = · · · = Ωtt, for any tp× tp matrix

B,

Ω−1/2hhh
(
B

)
= hhh

(
Ω−1/2B

)
and hhh

(
B

)
Ω−1/2 = hhh

(
BΩ−1/2

)
.

From Lemma 2, (10) has the distribution with

1

2
trace

{(
hhh
( n∑

i=1

ZiZ
T
i

)
−

n∑
i=1

ZiZ
T
i

)(
hhh
( n∑

i=1

ZiZ
T
i

)
−

n∑
i=1

ZiZ
T
i

)}
. (11)

We now show that (11) has a Chi-squared distribution with the desired d.f. In (11),

(
1
/√

n
){

hhh
( n∑

i=1

ZiZ
T
i

)
−

n∑
i=1

ZiZ
T
i

}

converges in distribution to




R1 0 · · · 0 0

0 R2 · · · 0 0
...

...
...

...
...

0 0 · · · Rt−1 0

0 0 · · · 0 Rt




, (12)

where

Rk =




r
(k)
11 r

(k)
12 · · · r

(k)
1(t−1) r

(k)
1t

r
(k)
21 r

(k)
22 · · · r

(k)
2(t−1) r

(k)
2t

...
...

...
...

...

r
(k)
(t−1)1 r

(k)
(t−1)2 · · · r

(k)
(t−1)(t−1) r

(k)
(t−1)t

r
(k)
t1 r

(k)
t2 · · · r

(k)
t(t−1) r

(k)
tt




(13)
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with r
(k)
ij = r

(k)
ji and

∑
k r

(k)
ij = 0. Here, all distinct r

(k)
ij s are independent to each other, and

r
(k)
ii s have the normal distribution with mean 0 and variance 2, and r

(k)
ij s have the normal

distribution with mean 0 and variance 1. To sum up,

Vn ≈ 1

2
trace

{(
hhh
( n∑

i=1

ZiZ
T
i

)
−

n∑
i=1

ZiZ
T
i

)(
hhh
( n∑

i=1

ZiZ
T
i

)
−

n∑
i=1

ZiZ
T
i

)}

≈ 1

2

∑

k

∑
ij

{(
r
(k)
ij

)2
}

,

which has the Chi-squared distribution with d.f.
(
t− 1)

{
p
(
p + 1

)/
2
}
.

Proof for Wn

Finally, we prove the convergence of Wn. Note that

Wn = −n
(

log
∣∣hhh(

SSM

)∣∣− log
∣∣SSA

∣∣
)

= −n
{(

log
∣∣hhh(

SSA

)∣∣− log
∣∣SSA

∣∣
)

+
(

log
∣∣hhh(

SSM

)− log
∣∣hhh(

SSA

)∣∣
)}

= Vn + n
(

log
∣∣hhh(

SSM

)− log
∣∣hhh(

SSA

)∣∣
)

= Vn + n
(

log
∣∣hhh(

SSM

)− log
∣∣hhh(

SSA

)∣∣
)
. (14)

With the arguments similar to the proof of Mn, we have

n
(

log
∣∣hhh(

SSM

)− log
∣∣hhh(

SSA

)∣∣
)

= n log
∣∣∣Itp + (1/n)hhh

(
Ω−1 (Itp −A)Ω1/2

( ∑
i

ZT
i

/√
n
)( ∑

i

Zi

/√
n
)
Ω1/2 (Itp −A)

)∣∣∣

≈ trace
(
hhh
(
Ω−1 (Itp −A)Ω1/2

( ∑
i

ZT
i

/√
n
)( ∑

i

Zi

/√
n
)
Ω1/2 (Itp −A)

))

≈ trace
(
Ω−1 (Itp −A)Ω1/2ZTZΩ1/2 (Itp −A)

)

= ZT (Itp −A)Z, (15)

which has the Chi-squared distribution with d.f. (t− 1)p. Further, the limiting distribution

of Vn does not depend on Ωij for i, js that is i 6= j. In evaluating SSA, we could assume

Ωij = 0 without loss of generality, and can get the independence between V∞ and (15).

Thus, Wn converges in distribution to the sum of two independent Chi-squared distribution
(
t− 1

){
p + p(p + 1)

/
2
}
.
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Table 1: Empirical type I error probabilities of the likelihood ratio tests under H0 for two

multivariate normal populations at level α = 0.05. µ1 = µ2 = 0; σ2
1 = σ2

2 = 1; ρ1 = ρ2 = 0.5;

n is sample size; Mn: LRT for equality of mean vectors; Vn: LRT for equality of covariance

matrices; Wn: LRT for simultaneous equality of both mean vectors and covariance matrices;

χ2: the asymptotic Chi-squared tests.

Mn χ2
5 Vn χ2

15 Wn χ2
20

Independent populations (ρ12 = ρ21 = 0)

n = 25 0.01 0.19 0.09 0.18 0.08 0.22

n = 50 0.02 0.10 0.09 0.11 0.08 0.12

n = 100 0.04 0.07 0.08 0.08 0.07 0.08

n = 500 0.05 0.06 0.06 0.06 0.05 0.06

Dependent populations (ρ12 = ρ21 = 0.3)

n = 25 0.02 0.23 0.06 0.15 0.06 0.17

n = 50 0.03 0.09 0.07 0.10 0.06 0.09

n = 100 0.05 0.08 0.05 0.05 0.04 0.06

n = 500 0.05 0.05 0.05 0.05 0.05 0.04



Table 2: Empirical type I error probabilities of the likelihood ratio test Mn under H0 for

two correlated multivariate normal populations at level α = 0.05. µ1 = µ2 = 0; σ2
1 = 1;

ρ12 = ρ21 = 0.3; n is sample size; Mn: LRT for equality of mean vectors; χ2: the asymptotic

Chi-squared test.

σ2
2/σ

2
1 = 1 σ2

2/σ
2
1 = 1.5 σ2

2/σ
2
1 = 2

Mn χ2
5 Mn χ2

5 Mn χ2
5

Same within-population correlation (ρ1 = ρ2 = 0.5)

n = 25 0.02 0.23 0.03 0.22 0.01 0.26

n = 50 0.03 0.09 0.02 0.10 0.03 0.14

n = 100 0.05 0.08 0.04 0.09 0.05 0.09

n = 500 0.05 0.05 0.04 0.06 0.05 0.07

Different within-population correlation (ρ1 = 0.5, ρ2 = 0)

n = 25 0.01 0.32 0.03 0.37 0.01 0.36

n = 50 0.01 0.19 0.02 0.19 0.02 0.23

n = 100 0.03 0.16 0.06 0.18 0.05 0.22

n = 500 0.06 0.17 0.05 0.15 0.05 0.18



Table 3: Empirical rejection probabilities of the likelihood ratio tests for comparison of two

correlated multivariate normal populations at level α = 0.05. µ1 = 0; σ2
1 = 1; ρ12 = ρ21 = 0.3;

n is sample size; Mn: LRT for equality of mean vectors; Vn: LRT for equality of covariance

matrices; Wn: LRT for simultaneous equality of both mean vectors and covariance matrices.

µ2 − µ1 = 0 µ2 − µ1 = 0.5 µ2 − µ1 = 1

Mn Vn Wn Mn Vn Wn Mn Vn Wn

Same within-population correlation (ρ1 = ρ2 = 0.5)

n = 25 σ2
2/σ

2
1 = 1 0.02 0.06 0.06 0.32 0.07 0.28 0.96 0.07 0.77

σ2
2/σ

2
1 = 1.5 0.03 0.21 0.20 0.22 0.20 0.41 0.84 0.18 0.78

σ2
2/σ

2
1 = 2 0.01 0.53 0.51 0.11 0.55 0.64 0.67 0.55 0.87

n = 50 σ2
2/σ

2
1 = 1 0.03 0.07 0.06 0.90 0.06 0.71 1.00 0.07 1.00

σ2
2/σ

2
1 = 1.5 0.02 0.43 0.41 0.73 0.48 0.86 1.00 0.45 1.00

σ2
2/σ

2
1 = 2 0.03 0.95 0.92 0.56 0.96 0.99 1.00 0.92 1.00

n = 100 σ2
2/σ

2
1 = 1 0.05 0.05 0.04 1.00 0.05 0.98 1.00 0.06 1.00

σ2
2/σ

2
1 = 1.5 0.04 0.83 0.77 0.99 0.84 0.99 1.00 0.81 1.00

σ2
2/σ

2
1 = 2 0.05 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00

n = 500 σ2
2/σ

2
1 = 1 0.05 0.05 0.05 1.00 0.04 1.00 1.00 0.05 1.00

σ2
2/σ

2
1 = 1.5 0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

σ2
2/σ

2
1 = 2 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Different within-population correlation (ρ1 = 0.5, ρ2 = 0)

n = 25 σ2
2/σ

2
1 = 1 0.01 0.58 0.58 0.99 0.54 0.99 1.00 0.58 0.99

σ2
2/σ

2
1 = 1.5 0.03 0.69 0.70 0.61 0.66 0.96 1.00 0.66 1.00

σ2
2/σ

2
1 = 2 0.01 0.83 0.84 0.30 0.83 0.98 0.95 0.84 1.00

n = 50 σ2
2/σ

2
1 = 1 0.01 0.90 0.90 1.00 0.90 1.00 1.00 0.91 1.00

σ2
2/σ

2
1 = 1.5 0.02 0.95 0.94 1.00 0.96 1.00 1.00 0.96 1.00

σ2
2/σ

2
1 = 2 0.02 0.99 0.99 0.93 0.98 1.00 1.00 0.99 1.00

n = 100 σ2
2/σ

2
1 = 1 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

σ2
2/σ

2
1 = 1.5 0.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

σ2
2/σ

2
1 = 2 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

n = 500 σ2
2/σ

2
1 = 1 0.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

σ2
2/σ

2
1 = 1.5 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

σ2
2/σ

2
1 = 2 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00



Table 4: Comparison of the proposed parametric bootstrap procedure and the alternative

nonparametric bootstrap procedure, in terms of the empirical rejection probabilities of the

likelihood ratio test Mn for the equality of mean vectors of two correlated multivariate normal

populations at level α = 0.05. Par: parametric bootstrap; Nonpar: nonparametric bootstrap;

µ1 = 0; σ2
1 = 1; ρ1 = ρ2 = 0.5; ρ12 = ρ21 = 0.3; n is sample size.

µ2 − µ1 = 0 µ2 − µ1 = 0.5 µ2 − µ1 = 1

Par Nonpar Par Nonpar Par Nonpar

n = 25 σ2
2/σ

2
1 = 1 0.02 0.00 0.32 0.02 0.96 0.51

σ2
2/σ

2
1 = 1.5 0.03 0.00 0.22 0.01 0.84 0.25

σ2
2/σ

2
1 = 2 0.01 0.00 0.11 0.01 0.67 0.17

n = 50 σ2
2/σ

2
1 = 1 0.03 0.02 0.90 0.84 1.00 1.00

σ2
2/σ

2
1 = 1.5 0.02 0.02 0.73 0.67 1.00 1.00

σ2
2/σ

2
1 = 2 0.03 0.01 0.56 0.45 1.00 0.99

n = 100 σ2
2/σ

2
1 = 1 0.05 0.03 1.00 1.00 1.00 1.00

σ2
2/σ

2
1 = 1.5 0.04 0.04 0.99 0.98 1.00 1.00

σ2
2/σ

2
1 = 2 0.05 0.03 0.92 0.92 1.00 1.00


